PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The biomechanics of pathological gait - from muscle to movement

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Clinicians face the daily challenge of assessing and treating patients with gait problems. Musculoskeletal models appear to show potential for assisting with the understanding of complex pathological movements, however they are also complex and reliant on multiple assumptions in order to maintain stability. This paper breaks down the process by which muscles produce movement into a series of steps. The contributions and limitations of modelling each separate step are then considered. The calf muscles serve as an illustration throughout the paper, as these muscles are frequently implicated in the development of pathological gait patterns. An argument is put forward for the development of a range of tools for use in clinical practice, leading to an enhanced appreciation of the importance of joint moments. Improved clinical understanding of the link between muscles and movement will allow clinicians to develop better treatment plans for their patients.
Rocznik
Strony
3--12
Opis fizyczny
Bibliogr. 35 poz., il.
Twórcy
autor
Bibliografia
  • [1] NEPTUNE R.R., KAUTZ S.A., ZAJAC F.E., Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking, J. Biomech., 2001, 34(11), 1387-1398.
  • [2] REINBOLT J.A., FOX M.D., ARNOLD A.S., OUNPUU S., DELP S.L., Importance of preswing rectus femoris activity in stiff-knee gait, J. Biomech., 2008, 41, 2362-2369.
  • [3] SALMONS S., Chapter 7: Muscles, [in:] Gray's Anatomy, 38th edition, Churchill Livingstone, 1995.
  • [4] PERRY J., Chapter 4: Ankle Foot Complex, [in:] Gait analysis: normal and pathological function, SLACK Incorporated, 1992.
  • [5] GAGE J.R., Chapter 12: Pathological gait and lever arm dysfunction, [in:] Treatment of gait problems in cerebral palsy. Clinics in Developmental Medicine, 164-165, ed. J.R. Gage, MacKeith Press, 2004.
  • [6] HOF A.L., OTTEN E., Assessment of two-dimensional induced accelerations from measured kinematic and kinetic data, Gait Posture, 2005, 22(3), 182-188.
  • [7] SCHWARTZ M., LAKIN G., The effect of tibial torsion on the dynamic function of the soleus during gait, Gait Posture, 2003, 17(2), 113-118.
  • [8] KIMMEL S.A., SCHWARTZ M.H., A baseline of dynamic muscle function during gait, Gait Posture, 2006, 23, 211-221.
  • [9] ZAJAC F.E., Muscle and tendon: properties, models, scaling and application to biomechanics and motor control, Crit. Rev. Biomed. Eng., 1989, 17, 359-411.
  • [10] DELP S.L., ARNOLD A.S., SPEERS R.A., MOORE C.A., Hamstrings and psoas lengths during normal and crouch gait: implications for muscle-tendon surgery, J. Orthop. Res., 1996, 14, 144-151.
  • [11] ARNOLD A.S., LIU M.Q., SCHWARTZ M.H., OUNPUU S., DELP S.L., The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait, Gait Posture, 2006, 23, 273-281
  • [12] WREN T.A.L., DO P.K., KAY R.M., Gastrocnemius and soleus lengths in cerebral palsy equinus gait - differences between children with and without static contracture and effects of gastrocnemius recession, J. Biomech., 2004, 37, 1321-1327.
  • [13] FUKUNAGA T., KUBO K., KAWAKAMI Y., SUKASHIRO S., KANEHISA H., MAGANARIS C., In vivo behaviour of human muscle tendon during walking, Proc. R. Soc. Lond., 2001, 268, 229-233.
  • [14] CROWNINSHIELD R.D., BRAND R.A., A physiologically based criterion of muscle force prediction in locomotion, J. Biomech., 1981, 14, 793-801.
  • [15] THELEN D.G., ANDERSON F.C., DELP S.L., Generating dynamic simulations of movement using computed muscle control, J. Biomech., 2003, 36, 321-328.
  • [16] HUIJING P.A., Epimuscular myofascial force transmission between antagonistic and synergistic muscles can explain movement limitation in spastic paresis, J. Electromyogr. Kinesiol., 2007, 17, 708-724.
  • [17] MOHAGHEGHI A.A., KHAN T., MEADOWS T.H., GIANNIKAS K., BALTZOPOULOS V., MAGANARIS C.N., In vivo gastrocnemius muscle fascicle length in children with and without diplegic cerebral palsy, Dev. Med. Child. Neurol., 2008, 50, 44-50.
  • [18] MALAIYA R., MCNEE A.E., FRY N.R., EVE L.C., GOUGH M., SHORTLAND A.P., The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy, J. Electromyogr. Kinesiol., 2007, 17, 657-663.
  • [19] ANDERSON F.C., PANDY M.G., Static and dynamic optimization solutions for gait are practically equivalent, J. Biomech., 2001, 34, 153-161.
  • [20] STACKHOUSE S.K., BINDER-MACLEOD S.A., LEE S.C.K., Voluntary muscle activation, contractile properties and fatiguability in children with and without cerebral palsy, Muscle Nerve, 2005, 31, 594-601.
  • [21] KLEIN P., MATTYS S., ROOZE M., Moment arm length variations of selected muscles acting on talocrural and subtalar joints during movement: an in vitro study, J. Biomech., 1996, 29(1), 21-30.
  • [22] SCHEYS L., LEOCKX D., SPAEPEN A., SUETENS P., JONKERS I., Atlas-based non-rigid image registration to automatically define line-of-action muscle models: A validation study, J. Biomech., 2009, 42, 565-572.
  • [23] BLEMKER S.S., DELP S.L., Three-dimensional representation of complex muscle architectures and geometries, Annals of Biomedical Engineering, 2005, 33, 661-673.
  • [24] CHEN G., Induced acceleration contributions to locomotion dynamics are not physically well defined, Gait Posture, 2006, 23, 37-44.
  • [25] STEWART C., POSTANS N., SCHWARTZ M.H., ROZUMALSKI A., ROBERTS A., An exploration of the function of the triceps surae during normal gait using functional electrical stimulation, Gait & Posture, 2007, 26, 482-488.
  • [26] HERMANDEZ A., DHAHER Y., THELEN D.G., In vivo measurement of dynamic rectus femoris function at postures representative of early swing phase, J. Biomech., 2008, 41, 137-144.
  • [27] RISHER D.W., SCHUTTE L.M., RUNGE C.F., The use of inverse dynamics solutions in direct dynamics simulations, J. Biomech. Eng., 1997, 119, 417-422.
  • [28] FRIEDERICH J.A., BRAND R.A., Muscle fiber architecture in the human lower limb, J. Biomech., 1990, 23, 91-95.
  • [29] WARD S.R., ENG C.M., SMALLWOOD L.H., LIEBER R.L., Are current measurements of lower extremity muscle architecture accurate? Clin. Orthop. Relat. Res., 2009, 467, 1528-1132.
  • [30] WICKIEWICZ T.L., ROY R.R., POWELL P.L., EDGERTON V.R., Muscle architecture of the human lower limb, Clin. Orthop. Relat. Res., 1983, 179, 275-283.
  • [31] DUL J., SHIAVI R., GREEN N.E., Simulation of tendon transfer surgery, Eng. Med., 1985, 1, 31-38.
  • [32] SPOOR C.W., van LEEUWEN J.L., MESKERS C.G.M., TITULAER A.F., HUSON A., Estimation of instantaneous moment arms of the lower-leg muscles, J. Biomech., 1990, 23, 1247-1259.
  • [33] WRETENBERG P., NEMETH G., LAMONTAGNE M., LUNDIN B., Passive knee muscle moment arms measured in vivo with MRI, Clin. Biomech., 1996, 11, 439-446.
  • [34] HINTERMANN B., NIGG B.M., SOMMER C., Foot movement and tendon excursion: an in vitro study, Foot Ankle Int., 1994, 15, 386-395.
  • [35] JARVIS S., POSTANS N., STEWART C., Does midfoot break increase crouch in children with cerebral palsy? Gait Posture, 2008, 28S, S9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBA-0009-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.