PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomechanics of the brain for computer-integrated surgery

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Biomechanics (10 ; 25-28.08.2010 ; Warszawa, Polska)
Języki publikacji
EN
Abstrakty
EN
This article presents a summary of the key-note lecture delivered at Biomechanics 10 Conference held in August 2010 in Warsaw. We present selected topics in the area of mathematical and numerical modelling of the brain biomechanics for neurosurgical simulation and brain image registration. These processes can reasonably be described in purely mechanical terms, such as displacements, strains and stresses and therefore can be analysed using established methods of continuum mechanics. We advocate the use of fully non-linear theory of continuum mechanics. We discuss in some detail modelling geometry, boundary conditions, loading and material properties. We consider numerical problems such as the use of hexahedral and mixed hexahedral–tetrahedral meshes as well as meshless spatial discretisation schemes. We advocate the use of Total Lagrangian Formulation of both finite element and meshless methods together with explicit time-stepping procedures. We support our recommendations and conclusions with an example of brain shift computation for intraoperative image registration.
Rocznik
Strony
25--37
Opis fizyczny
Bibliogr. 93 poz., il.
Twórcy
autor
autor
autor
  • Intelligent Systems for Medicine Laboratory, School of Mechanical Engineering, The University of Western Australia, kmiller@mech.uwa.edu.au
Bibliografia
  • [1] ODEN J.T., BELYTSCHKO T., BABUSKA I., HUGHES T.J.R., Research directions in computational mechanics, Comput. Methods Appl. Mech. Engrg., 2003, 192, 913-922.
  • [2] NAKAJI P., SPELTZER R.F., The marriage of technique, technology, and judgement, Innovations in Surgical Approach, 2004, 51, 177-185.
  • [3] BUCHOLZ R., MACNEIL W., MCDURMONT L., The operating room of the future, Clinical Neurosurgery, 2004, 51, 228-237.
  • [4] FERRANT M., NABAVI A., MACQ B., BLACK P.M., JOLESZ F.A., KIKINIS R., WARFIELD S.K., Serial registration of intraoperative MR images of the brain, Medical Image Analysis, 2002, 6(4), 337-359.
  • [5] WARFIELD S.K., TALOS F., TEI A., BHARATHA A., NABAVI A., FERRANT M., BLACK P.M., JOLESZ F.A., KIKINIS R., Real-time registration of volumetric brain MRI by biomechanical simulation of deformation during image guided surgery, Computing and Visualization in Science, 2002, 5, 3-11.
  • [6] WARFIELD S.K., HAKER S.J., TALOS I.-F., KEMPER C.A., WEISENFELD N., MEWES U.J., GOLDBERG-ZIMRING D., ZOU K.H., WESTIN C.-F., WELLS W.M., TEMPANY C.M.C., GOLBY A., BLACK P.M., JOLESZ F.A., KIKINIS R., Capturing intraoperative deformations: research experience at Brigham and Womens's hospital, Medical Image Analysis, 2005, 9(2), 145-162.
  • [7] WITTEK A., MILLER K., KIKINIS R., WARFIELD S.K., Patientspecific model of brain deformation: application to medical image registration, Journal of Biomechanics, 2007, 40, 919-929.
  • [8] DIMAIO S.P., SALCUDEAN S.E., Interactive simulation of needle insertion models, IEEE Trans. on Biomedical Engineering, 2005, 52(7).
  • [9] KIKINIS R., SHENTON M.E., IOSIFESCU D.V., MCCARLEY R.W., SAIVIROONPORN P., HOKAMA H.H., ROBATINO A., METCALF D., WIBLE C.G., PORTAS C.M., DONNINO R., JOLESZ F.A., A digital brain atlas for surgical planning, model driven segmentation and teaching, IEEE Transactions on Visualization and Computer Graphics, 1996, 2(3), 232-241.
  • [10] NOWINSKI W.L., From research to clinical practice: a Cerefy brain atlas story, International Congress Series, 2003, 1256, 75-81.
  • [11] NOWINSKI W.L., BENABID A.L., New directions in atlas assisted stereotactic functional neurosurgery, [in:] Advanced Techniques in Image-Guided Brain and Spine Surgery, G. IM (editor), 2002, Thieme, New York, 162-174.
  • [12] NOWINSKI W.L., THIRUNAVUUKARASUU A., BENABID A.L., The Cerefy Clinical Brain Atlas, 2003, Thieme, New York.
  • [13] OWEN S.J., A Survey of Unstructured Mesh Generation Technology, [in:] 7th International Meshing Roundtable, 1998, Dearborn, Michigan, USA.
  • [14] VICECONTI M., TADDEI F., Automatic generation of finite element meshes from computed tomography data, Critical Reviews in Biomedical Engineering, 2003, 31(1), 27-72.
  • [15] OWEN S.J., Hex-dominant mesh generation using 3D constrained triangulation, Computer-Aided Design, 2001, 33, 211-220.
  • [16] CASTELLANO-SMITH A.D., HARTKENS T., SCHNABEL J., HOSE D.R., LIU H., HALL W.A., TRUWIT C.L., HAWKENS D.J., HILL D.L.G., Constructing patient specific models for correcting intraoperative brain deformation, [in:] 4th International Conference on Medical Image Computing and Computer Assisted Intervention MICCAI, 2001, Utrecht, The Netherlands.
  • [17] COUTEAU B., PAYAN Y., LAVALLÉE S., The mesh-matching algorithm: an automatic 3D mesh generator of finite element structures, Journal of Biomechanics, 2000, 33, 1005-1009.
  • [18] LUBOZ V., CHABANAS M., SWIDER P., PAYAN Y., Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict surgical outcomes, Computer Methods in Biomechanics and Biomedical Engineering, 2005, 8(4), 259-265.
  • [19] FERRANT M., MACQ B., NABAVI A., WARFIELD S.K., Deformable Modeling for Characterizing Biomedical Shape Changes, [in:] Discrete Geometry for Computer Imagery: 9th International Conference, 2000, Uppsala, Sweden, Springer-Verlag.
  • [20] CLATZ O., DELINGETTE H., BARDINET E., DORMONT D., AYACHE N., Patient Specific Biomechanical Model of the Brain: Application to Parkinson's disease procedure, [in:] International Symposium on Surgery Simulation and Soft Tissue Modeling (IS4TM'03), 2003, Juan-les-Pins, France, Springer-Verlag.
  • [21] FLANAGAN D.P., BELYTSCHKO T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, International Journal for Numerical Methods in Engineering, 1981, 17, 679-706.
  • [22] JOLDES G.R., WITTEK A., MILLER K., An efficient hourglass control implementation for the uniform strain hexahedron using the total Lagrangian formulation, Communications in Numerical Methods in Engineering, 2008, 24, 1315-1323.
  • [23] HUGHES T.J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, 2000, Mineola, Dover Publications, 682.
  • [24] BONET J., BURTON A.J., A simple averaged nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications, Communications in Numerical Methods in Engineering, 1998, 14, 437-449.
  • [25] BONET J., MARRIOTT H., HASSAN O., An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications, Communications in Numerical Methods in Engineering, 2001, 17, 551-561.
  • [26] ZIENKIEWICZ O.C., ROJEK J., TAYLOR R.L., PASTOR M., Triangles and tetrahedra in explicit dynamic codes for solids, International Journal for Numerical Methods in Engineering, 1998, 43, 565-583.
  • [27] DOHRMANN C.R., HEINSTEIN M.W., JUNG J., KEY S.W., WITKOWSKI W.R., Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes, International Journal for Numerical Methods in Engineering, 2000, 47, 1549-1568.
  • [28] JOLDES G.R., WITTEK A., MILLER K., Non-locking tetrahedral finite element for surgical simulation, Communications in Numerical Methods in Engineering, 2009, 25(7), 827-836.
  • [29] HORTON A., WITTEK A., JOLDES G.R., MILLER K., A meshless total Lagrangian explicit dynamics algorithm for surgical simulation, Communications in Numerical Methods in Engineering, 2010, DOI: 10.1002/cnm.1374.
  • [30] HORTON A., WITTEK A., MILLER K., Computer Simulation of Brain Shift Using an Element Free Galerkin Method, [in:] 7th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering CMBEE 2006, 2006, Antibes, France.
  • [31] HORTON A., WITTEK A., MILLER K., Towards meshless methods for surgical simulation, [in:] Computational Biomechanics for Medicine Workshop, Medical Image Computing and Computer-Assisted Intervention MICCAI 2006, 2006, Copenhagen, Denmark.
  • [32] HORTON A., WITTEK A., MILLER K., Subject-Specific Biomechanical Simulation of Brain Indentation Using a Meshless Method, [in:] International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI 2007, 2007, Brisbane, Australia, Springer.
  • [33] BELYTSCHKO T., LU Y.Y., GU L., Element-free Galerkin methods, International Journal for Numerical Methods in Engineering, 1994, 37, 229-256.
  • [34] LIU G.R., Mesh Free Methods: Moving Beyond the Finite Element Method, 2003, Boca Raton, CRC Press.
  • [35] LI S., LIU W.K., Meshfree Particle Methods, 2004, Springer-Verlag.
  • [36] HAINES D.E., HARKEY H.L., AL-MEFTY O., The "subdural" space: A new look at an outdated concept, Neurosurgery, 1993, 32, 111-120.
  • [37] HAGEMANN A., ROHR K., STIEHL H.S., SPETZGER U., GILSBACH J.M., Biomechanical modeling of the human head for physically based, nonrigid image registration, IEEE Transactions on Medical Imaging - Special Issue on Model-Based Analysis of Medical Images, 1999, 18(10), 875-884.
  • [38] MIGA M.I., PAULSEN K.D., HOOPES P.J., KENNEDY F.E., HARTOV A., ROBERTS D.W., In vivo quantification of a homogenous brain deformation model for updating preoperative images during surgery, IEEE Transactions on Biomedical Engineering, 2000, 47(2), 266-273.
  • [39] WITTEK A., OMORI K., Parametric study of effects of brain-skull boundary conditions and brain material properties on responses of simplified finite element brain model under angular acceleration in sagittal plane, JSME International Journal, 2003, 46(4), 1388-1398.
  • [40] WITTEK A., KIKINIS R., WARFIELD S.K., MILLER K., Brain shift computation using a fully nonlinear biomechanical model, [in:] 8th International Conference on Medical Image Computing and Computer Assisted Surgery MICCAI 2005, 2005, Palm Springs, California, USA.
  • [41] WITTEK A., HAWKINS T., MILLER K., On the unimportance of constitutive models in computing brain deformation for image-guided surgery, Biomechanics and Modeling in Mechanobiology, 2008, DOI: 10.1007/s10237-008-0118-1.
  • [42] DUTTA-ROY T., WITTEK A., MILLER K., Biomechanical modeling of normal pressure hydrocephalus, Journal of Biomechanics, 2008, 41(10), 2263-2271.
  • [43] JOLDES G.R., WITTEK A., MILLER K., MORRISS L., Realistic and Efficient Brain-Skull Interaction Model For Brain Shift Computation, [in:] Computational Biomechanics for Medicine III Workshop, MICCAI, 2008, New York.
  • [44] MILLER K., WITTEK A., Neuroimage Registration as Displacement - Zero Traction Problem of Solid Mechanics, [in:] Computational Biomechanics for Medicine MICCAIAssociated Workshop, 2006, Copenhagen, MICCAI.
  • [45] MIGA M.I., SINHA T.K., CASH D.M., GALLOWAY R.L., WEIL R.J., Cortical surface registration for image-guided neurosurgery using laser-range scanning, IEEE Transactions on Medical Imaging, 2003, 22(8), 973-985.
  • [46] MILLER K., Method of testing very soft biological tissues in compression, Journal of Biomechanics, 2005, 38, 153-158.
  • [47] MILLER K., Biomechanics without mechanics: calculating soft tissue deformation without differential equations of equilibrium, [in:] 5th Symposium on Computer Methods in Biomechanics and Biomedical Engineering CMBBE2004, 2005, Madrid, Spain, First Numerics.
  • [48] MILLER K., How to test very soft biological tissues in extension, Journal of Biomechanics, 2001, 34(5), 651-657.
  • [49] MILLER K., CHINZEI K., Mechanical properties of brain tissue in tension, Journal of Biomechanics, 2002, 35, 483-490.
  • [50] MILLER K., Biomechanics of Brain for Computer Integrated Surgery, 2002, Warsaw, Publishing House of Warsaw University of Technology.
  • [51] ABAQUS I., ABAQUS Online Documentation: Version 6.5-1. 2004.
  • [52] HALLQUIST J.O., LS-DYNA Theory Manual, 2005, Livermore, California, 94551, Livermore Software Technology Corporation.
  • [53] LS-DYNA. Keyword User's Manual. Version 970, 2003, Livermore, California, Livermore Software Technology Corporation.
  • [54] WALSH E.K., SCHETTINI A., Calculation of brain elastic parameters in vivo, Am. J. Physiol., 1984, 247, R637-R700.
  • [55] ESTES M.S., MCELHANEY J.H., Response of Brain Tissue of Compressive Loading, ASME Paper No. 70-BHF-13, 1970.
  • [56] PAMIDI M.R., ADVANI S.H., Nonlinear constitutive relations for human brain tissue, Trans. ASME, J. Biomech. Eng., 1978, 100, 44-48.
  • [57] SAHAY K.B., MEHROTRA R., SACHDEVA U., BANERJI A.K., Elastomechanical characterization of brain tissues, J. Biomech., 1992, 25, 319-326.
  • [58] RUAN J.S., KHALIL T., KING A.I., Dynamic response of the human head to impact by three-dimensional finite element analysis, Journal of Biomechanical Engineering, 1994, 116 (February), 44-50.
  • [59] VOO L., KUMARESAN S., PINTAR F.A., YOGANANDAN N., SANCES J., A. Finite-element models of the human head, Med. Biol. Eng. Comp., 1996, 34, 375-381.
  • [60] MILLER K., Constitutive model of brain tissue suitable for finite element analysis of surgical procedures, Journal of Biomechanics, 1999, 32, 531-537.
  • [61] CHINZEI K., MILLER K., Compression of swine brain tissue; Experiment in vitro, Journal of Mechanical Engineering Laboratory, 1996, 106-115.
  • [62] MENDIS K.K., STALNAKER R.L., ADVANI S.H., A constitutive relationship for large deformation finite element modeling of brain tissue, Journal of Biomechanical Engineering, 1995, 117, 279-285.
  • [63] MILLER K., Constitutive modelling of abdominal organs (Technical note), Journal of Biomechanics, 2000, 33, 367-373.
  • [64] MILLER K., CHINZEI K., ORSSENGO G., BEDNARZ P., Mechanical properties of brain tissue in-vivo: experiment and computer simulation, Journal of Biomechanics, 2000, 33, 1369-1376.
  • [65] NASSERI S., BILSTON L.E., PHAN-THIEN N., Viscoelastic properties of pig kidney in shear, experimental results and modelling, Rheol. Acta, 2002, 41, 180-192.
  • [66] BILSTON L., LIU Z., PHAN-TIEM N., Large strain behaviour of brain tissue in shear: Some experimental data and differential constitutive model, Biorheology, 2001, 38, 335-345.
  • [67] FARSHAD M., BARBEZAT M., FLÜELER P., SCHMIDLIN F., GRABER P., NIEDERER P., Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma, Journal of Biomechanics, 1999, 32(4), 417-425.
  • [68] BILSTON L.E., LIU Z., PHAN-TIEN N., Linear viscoelastic properties of bovine brain tissue in shear, Biorheology, 1997, 34(6), 377-385.
  • [69] PRANGE M.T., MARGULIES S.S., Regional, directional, and age-dependent properties of the brain undergoing large deformation, ASME Journal of Biomechanical Engineering, 2002, 124, 244-252.
  • [70] SALCUDEAN S., TURGAY E., ROHLING R., Identifying the mechanical properties of tissue by ultrasound strain imaging, Ultrasound in Medicine and Biology, 2006, 32(2), 221-235.
  • [71] SINKUS R., TANTER M., XYDEAS T., CATHELINE S., BERCOFF J., FINK M., Viscoelastic shear properties of in vivo breast lesions measured by MR elastography, Magnetic Resonance Imaging, 2005, 23, 159-165.
  • [72] MCCRACKEN P.J., MANDUCA A., FELMLEE J., EHMAN R.L., Mechanical transient-based magnetic resonance elastography, Magnetic Resonance in Medicine, 2005, 53(3), 628-639.
  • [73] www.ansys.com, ANSYS home page
  • [74] www.adina.com, ADINA home page
  • [75] BELYTSCHKO T., A survey of numerical methods and computer programs for dynamic structural analysis, Nuclear Engineering and Design, 1976, 37, 23-34.
  • [76] BATHE K.-J., Finite Element Procedures, 1996, New Jersey, Prentice-Hall.
  • [77] CRISFIELD M.A., Non-linear dynamics, [in:] Non-Linear Finite Element Analysis of Solids and Structures, 1998, John Wiley & Sons, Chichester, 447-489.
  • [78] MILLER K., CHINZEI K., Constitutive modelling of brain tissue; experiment and theory, Journal of Biomechanics, 1997, 30(11/12), 1115-1121.
  • [79] MILLER K., JOLDES G.R., LANCE D., WITTEK A., Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation, Communications in Numerical Methods in Engineering, 2007, 23, 121-134.
  • [80] FERRANT M., NABAVI A., MACQ B., JOLESZ F.A., KIKINIS R., WARFIELD S.K., Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model, IEEE Transactions on Medical Imaging, 2001, 20, 1384-1397.
  • [81] CHAKRAVARTY M.M., SADIKOT A.F., GERMANN JR., BERTRAND G., COLLINS D.L., Towards a validation of atlas warping techniques, Medical Image Analysis, 2008, 12(6), 713-726.
  • [82] WALSH T., Hardware Finite Element Procedures. Internal Report. Intelligent Systems for Medicine Laboratory, 2004, The University of Western Australia, Crawley, Australia.
  • [83] JOLDES G.R., WITTEK A., MILLER K., Real-Time Nonlinear Finite Element Computations on GPU - Application to Neurosurgical Simulation, Computer Methods in Applied Mechanics and Engineering, 2010, DOI: 10.1016/j.cma.2010.06.037.
  • [84] BEAUCHEMIN S.S., BARRON J.L., The computation of optical flow, ACM Computing Surveys, 1995, 27, 433-467.
  • [85] HORN B.K.P., SCHUNK B.G., Determining optical flow, Artificial Intelligence, 1981, 17, 185-203.
  • [86] WELLS III W.M., VIOLA P., ATSUMI H., NAKAJIMA S., KIKINIS R., Multi-modal volume registration by maximization of mutual information, Medical Image Analysis, 1996, 1(1), 35-51.
  • [87] VIOLA P., Alignment by Maximization of Mutual Information, PhD Thesis, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1995.
  • [88] WARFIELD S.K., REXILIUS J., HUPPI P.S., INDER T.E., MILLER E.G., WELLS III W.M., ZIENTARA G.P., JOLESZ F.A., KIKINIS R., A binary entropy measure to assess nonrigid registration algorithms, [in:] 4th International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI, 2001, Utrecht, The Netherlands.
  • [89] DENGLER J., SCHMIDT M., The dynamic pyramid - a model for motion analysis with controlled continuity, International Journal of Pattern Recognition and Artificial Intelligence, 1988, 2, 275-286.
  • [90] ROSENFELD A., KAK A.C., Digital Picture Processing, Computer Science and Applied Mathematics, 1976, New York, Academic Press.
  • [91] TAYLOR Z., MILLER K., Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus, Journal of Biomechanics, 2004, 37, 1263-1269.
  • [92] MILLER K., TAYLOR Z., NOWINSKI W.L., Towards computing brain deformations for diagnosis, prognosis and nerosurgical simulation, Journal of Mechanics in Medicine and Biology, 2005, 5(1), 105-121.
  • [93] BERGER J., HORTON A., JOLDES G., WITTEK A., MILLER K., Coupling Finite Element and Mesh-Free Methods for Modelling Brain Deformations in Response to Tumour Growth, [in:] Computational Biomechanics for Medicine III MICCAIAssociated Workshop, 2008, New York City, MICCAI.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBA-0009-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.