Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Current diagnosis of bone loss and osteoporosis is based on the measurement of the Bone Mineral Density (BMD) or the apparent mass density. Unfortunately, in most clinical ultrasound densitometers: 1) measurements are often performed in a single anatomical direction, 2) only the first wave arriving to the ultrasound probe is characterized, and 3) the analysis of bone status is based on empirical relationships between measurable quantities such as Speed of Sound (SOS) and Broadband Ultrasound Attenuation (BUA) and the density of the porous medium. However, the existence of a second wave in cancellous bone has been reported, which is an unequivocal signature of poroelastic media, as predicted by Biot’s poroelastic wave propagation theory. A fabric-dependent anisotropic poroelastic approach is empolyed as a theoretical framework to describe the microarchitectural-dependent relationship between measurable wave properties and the elastic constants of trabecular bone, and thus represents an alternative for bone quality assessment beyond BMD alone.
Czasopismo
Rocznik
Tom
Strony
3--23
Opis fizyczny
Bibliogr. 54 poz., il.
Twórcy
autor
autor
- The New York Center for Biomedical Engineering, The Departments of Biomedical & Mechanical Engineering, scowin@earthlink.net
Bibliografia
- [1] COWIN S.C., CARDOSO L., Fabric dependence of poroelastic wave propagation, Biomechan. Model Mechanobiol., 2010, in press, Online First, Open Access.
- [2] SIFFERT R., KAUFMAN J., Ultrasonic bone assessment: "The time has come", Bone, 2006, Vol. 40, Issue 1, Page 5.
- [3] HANS D., FUERST T., UFFMANN M., Bone density and quality measurement using ultrasound, Curr. Opin. Rheumatol., 1996, 8, 370-375.
- [4] GRIMM M.J., WILLIAMS J.L., Assessment of bone quantity and 'quality' by ultrasound attenuation and velocity in the heel, Clin. Biomech. (Bristol, Avon), 1997a, 12, 281-285.
- [5] GRIGORIAN M., SHEPHERD J.A., CHENG X.G., NJEH C.F., TOSCHKE J.O., GENANT H.K., Does osteoporosis classification using heel BMD agree across manufacturers? Osteoporos Int., 2002, 13, 613-617.
- [6] NJEH C.F., FUERST T., DIESSEL E., GENANT H.K., Is quantitative ultrasound dependent on bone structure? A reflection, Osteoporos. Int., 2001, 12, 1-15.
- [7] NICHOLSON P.H.F., MÜLLER R., LOWET G., CHENG X.G., HILDEBRAND T., RÜEGSEGGER P., VAN DER PERRE G., DEQUEKER J., BOONEN S., Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone? Bone, 1998, 23, 425-431.
- [8] SAKATA S., BARKMANN R., LOCHMULLER E.M., HELLER M., GLUER C.C., Assessing bone status beyond BMD: evaluation of bone geometry and porosity by quantitative ultrasound of human finger phalanges, J. Bone Miner. Res., 2004, 19, 924-930.
- [9] HOSOKAWA A., OTANI T., Ultrasonic wave propagation in bovine cancellous bone, J. Acoust. Soc. Am., 1997, 101, 558-562.
- [10] HOSOKAWA A., OTANI T., Acoustic anisotropy in bovine cancellous bone, J. Acoust. Soc. Am., 1998, 103, 2718-2722.
- [11] CARDOSO L., TEBOUL F., MEUNIER A., ODDOU C., Ultrasound Characterization of Cancellous Bone: Theoretical and Experimental Analysis, Transactions of the ultrasonics symposium, IEEE, 2001, Vol. 2, 1213-1216.
- [12] CARDOSO L., TEBOUL F., SEDEL L., MEUNIER A., ODDOU C., In vitro acoustic waves propagation in human and bovine cancellous bone, Journal of Bone and Mineral Research, 2003, 18 (10), 1803-1812.
- [13] BIOT M.A., General theory of three-dimensional consolidation, J. Appl. Phys., 1941, 12, 155-164.
- [14] BIOT M.A., Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 1955, 26, 182-182.
- [15] BIOT M.A., Theory of propagation of elastic waves in a fluid saturated porous solid I low frequency range, J. Acoust. Soc. Am., 1956a, 28, 168-178.
- [16] BIOT M.A., Theory of propagation of elastic waves in a fluid saturated porous solid II higher frequency range, J. Acoust. Soc. Am., 1956b, 28, 179-191.
- [17] BIOT M.A., Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 1962a, 33, 1482-1498.
- [18] BIOT M.A., Generalized theory of acoustic propagation in porous dissipative media, J. Acoust. Soc. Am., 1962b, 28, 1254-1264.
- [19] COWIN S.C., The relationship between the elasticity tensor and the fabric tensor, Mech. Mater., 1985, 4, 137-147.
- [20] PLONA T.J., JOHNSON D.L., Acoustic properties of porous systems: I. phenomenological description, [in:] Physcis and Chemistry of porous media, AIP Conference Proceedings, 1983, No. 107 (Johnson D.L. and Sen P.N. eds.), 89-104.
- [21] WILLIAMS J.L., Ultrasonic wave propagation in cancellous and cortical bone: Prediction of some experimental results by Biot's theory, J. Acoust. Soc. Am., 1992, 91, 1106-1112.
- [22] CARDOSO L., MEUNIER A., ODDOU C., In vitro acoustic wave propagation in human and bovine cancellous bone as predicted by the Biot's theory, Journal of Mechanics in Medicine and Biology, 2008, Vol. 8, No. 2, 1-19.
- [23] MASON W.P., Physical acoustics and the properties of solids, Van Nostrand Reinhold, Princeton, 1958.
- [24] AULD B., Acoustic Fields and Waves in Solids. Vol. 1, John Wiley and Sons, New York, London, Sidney, Toronto, 1973.
- [25] JOHNSON D.L., PLONA T.J., Acoustic slow waves and the consolidation transition, J. Acoust. Soc. Am., 1982, 72, 556-565
- [26] PERROT C., CHEVILLOTTE F., PANNETON R., ALLARD J.-F., LAFARGE D., On the dynamic viscous permeability tensor symmetry, J. Acoust. Soc. Am. Express Letters, 2008, 124, EL210-217.
- [27] ASHMAN R.B., RHO J.Y., Elastic modulus of trabecular bone material, J. Biomech., 1988, 21, 77-181.
- [28] NICHOLSON P.H., CHENG X.G., LOWET G., BOONEN S., DAVIE M.W., DEQUEKER J., VAN DER PERRE G., Structural and material mechanical properties of human vertebral cancellous bone, Med. Eng. Phys., 1997, 19, 729-737.
- [29] MORGAN E.F., BAYRAKTAR H.H., KEAVENY T.M., Trabecular bone modulus-density relationships depend on anatomic site, J. Biomech., 2003, 36, 897-904.
- [30] TURNER C.H., RHO J., TAKANO Y., TSUI T.Y., PHARR G.M., The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques, J. Biomech., 1999, 32, 437-441.
- [31] JORGENSEN C.S., KUNDU T., Measurement of material elastic constants of trabecular bone: a micromechanical analytic study using a 1 GHz acoustic microscope, J. Orthop. Res., 2002, 20, 151-158.
- [32] RHO J.Y., TSUI T.Y., PHARR G.M., Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials, 1997, 18, 1325-1330.
- [33] RHO J.Y., ROY M.E. 2ND, TSUI T.Y., PHARR G.M., Elastic properties of microstructural components of human bone tissue as measured by nanoindentation, J. Biomed. Mater. Res., 1999, 45, 48-54.
- [34] ROY M.E., RHO J.Y., TSUI T.Y., EVANS N.D., PHARR G.M., Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone, J. Biomed. Mater. Res., 1999, 44, 191-197.
- [35] ZYSSET P.K., GUO X.E., HOFFLER C.E., MOORE K.E., GOLDSTEIN S.A., Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, J. Biomech., 1999, 32, 1005-1012.
- [36] HOFFLER C.E., MOORE K.E., KOZLOFF K., ZYSSET P.K., GOLDSTEIN S.A., Age, gender, and bone lamellae elastic moduli, J. Orthop. Res., 2000a, 18, 432-437.
- [37] HOFFLER C.E., MOORE K.E., KOZLOFF K., ZYSSET P.K., BROWN M.B., GOLDSTEIN S.A., Heterogeneity of bone lamellar-level elastic moduli, Bone, 2000b, 26, 603-609.
- [38] HENGSBERGER S., KULIK A., ZYSSET P., A combined atomic force microscopy and nanoindentation technique to investigate the elastic properties of bone structural units, Eur. Cell. Mater., 2001, 1, 12-17.
- [39] HENGSBERGER S., KULIK A., ZYSSET P., Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions, Bone, 2002, 30, 178-184.
- [40] PARFITT A.M., MATHEWS C.H., VILLANUEVA A.R., KLEEREKOPER M., FRAME B., RAO D.S., Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss, J. Clin. Invest., 1983, 72(4), 1396-1409.
- [41] REHMAN M.T., HOYLAND J.A., DENTON J., FREEMONT A.J., Age related histomorphometric changes in bone in normal British men and women, J. Clin. Pathol., June, 1994, 47(6), 529-534.
- [42] HILDEBRAND T., LAIB A., MÜLLER R., DEQUEKER J., RÜEGSEGGER P., Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus, Journal of Bone and Mineral Research, 1999, 14, 1167-1174.
- [43] GLORIEUX F.H., TRAVERS R., TAYLOR A., BOWEN J.R., RAUCH F., NORMAN M., PARFITT A.M., Normative data for iliac bone histomorphometry in growing children, Bone, 2000, 26(2), 103-109.
- [44] JONES A.C., SHEPPARD A.P., SOK R.M., ARNS C.H., LIMAYE A., AVERDUNK H., BRANDWOOD A., SAKELLARIOU A., SENDEN T.J., MILTHORPE B.K., KNACKSTEDT M.A., Threedimensional analysis of cortical bone structure using X-ray micro-computed tomography, Physica A: Statistical Mechanics and its Applications. 2004, Vol. 339, Issues 1-2, 125-130. Proceedings of the International Conference New Materials and Complexity.
- [45] BASILLAIS A., BENSAMOUN S., CHAPPARD CH., BRUNETIMBAULT B., LEMINEUR G., ILHARREBORDE B., HO BA THO M.C., BENHAMOU C.L., Three-dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements, Journal of Orthopaedic Science, 2007, 12, No. 2.
- [46] BEAR J., Dynamics of Fluids in Porous Media, Dover, 1988, p. 134.
- [47] LIM T.H., HONG J.H., Poroelastic properties of bovine vertebral trabecular bone, J. Orthop. Res., 2000, 18, 671-677.
- [48] GRIMM M.J., WILLIAMS J.L., Measurements of permeability in human calcaneal trabecular bone, J. Biomech., 1997b, 30, 743-745.
- [49] NAUMAN E.A., FONG K.E., KEAVENY T.M., Dependence of intertrabecular permeability on flow direction and anatomic site, Ann. Biomed. Eng., 1999, 27, 517-524.
- [50] KOHLES S.S., ROBERTS J.B., UPTON M.L., WILSON C.G., BONASSAR L.J., SCHLICHTING A.L., Direct perfusion measurements of cancellous bone anisotropic permeability, J. Biomech., 2001, 34, 1197-1202.
- [51] KOHLES S.S., ROBERTS J.B., Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport properties, J. Biomech. Eng., 2002, 124, 521-526.
- [52] BAROUD G., FALK R., CROOKSHANK M., SPONAGEL S., STEFFEN T., Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration, J. Biomech., 2004, 37, 189-196.
- [53] BEAUDOIN A.J., MIHALKO W.M., KRAUSE W.R., Finite element modelling of polymethylmethacrylate flow through cancellous bone, J. Biomech., 1991, 24(2), 127-136.
- [54] LI G.P., BRONK J.T., AN K.N., KELLY P.J., Permeability of cortical bone of canine tibiae, Microvasc. Res., 1987, 34(3), 302-10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBA-0009-0010