PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of muscles behaviour. Part 2 The computational model of muscles group acting on the elbow joint

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to present the computational model of muscles’ group describing the movements of flexion/extension at the elbow joint in the sagittal plane of the body when the forearm is being kept in the fixed state of supination/pronation. The method of evaluating the muscle forces is discussed in detail. This method is the basis for the quantitative and qualitative verification of the proposed computational model of muscles’ group. Applying this computational model, the forces of real muscles belonging to the muscles’ group can be evaluated without using any optimization technique.
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 24 poz., il.
Twórcy
autor
autor
  • Mechanics and Strength of Materials Department, Mechanical Engineering Faculty, Gdańsk University of Technology, Gdańsk, Poland, wiktoria.wojnicz@pg.gda.pl
Bibliografia
  • [1] AIT-HADDOU R., JINHA A., HERZOG W., BINDING P., Analysis of the force-sharing problem using an optimization model, Mathematical Biosciences, 2004, 191, 111-122.
  • [2] CAMILLERI M.J., HULL M.L., Are the maximum shortening velocity and the shape parameters in a Hill-type model of whole muscle related to activation? Journal of Biomechanics, 2005, 38, 2172-2180.
  • [3] DANIEL M., IGLIČ A., KRALJ-IGLIČ V., KONVIČKOVÁ S., Computer system for definition of the quantitative geometry of musculature from CT images, Computer Methods in Biomechanics and Biomedical Engineering, 2005, 8, 25-29.
  • [4] van DONKELAAR C.C., WILLEMS P.J.B., MUIJTJENS A.M.M., DROST M.R., Skeletal muscle transverse strain during isometric contraction at different lengths, Journal of Biomechanics, 1999, 32, 755-762.
  • [5] van der HELM F.C.T., CHADWICK E.K.J., A forward-dynamic shoulder and elbow model, Proceeding of the 4th Meeting of the International Shoulder Group, 2002, Cleveland.
  • [6] HERZOG W., Muscle synergies during voluntary movement, Proceedings of the XI International Biomechanics Seminar, 1998, Wrocław, Poland, 7-22.
  • [7] HUIJING P.A., Parameter interdependence and success of skeletal muscle modeling, Human Movement Science, 1995, 14, 443-486.
  • [8] JOHANSSON T., MEIER P., BLICKHAN R., A finite element model for the mechanical analysis of skeletal muscles, Journal of Theoretical Biology, 2000, 206, 131-149.
  • [9] KLEIN BRETELER M.D., SPOOR C.W., van der HELM F.C.T., Measuring muscle and joint geometry parameters of a shoulder for modeling purposes, Journal of Biomechanics, 1999, 32, 1191-1197.
  • [10] KOO T.K.K., MAK A.F.T., HUNG L.K., In vivo determination of subject-specific musculotendon parameters: applications to the prime elbow flexors in normal and hemiparetic subjects, Clinical Biomechanics, 2002, 17, 390-399.
  • [11] LANGENDERFER J., JERABEK S.A., THANGAMAMI V.B., KUHN J.E., HUGHES R.E., Musculoskeletal parameters of muscles crossing the shoulder and elbow and the effect of sarcomere length sample size on estimation of optimal muscle length, Clinical Biomechanics, 2004, 19, 664-670.
  • [12] LI G., PIERCE J.E., HERNDON J.H., A global optimization method for prediction of muscle forces of human musculoskeletal system, Journal of Biomechanics, 2006, 39, 522-529.
  • [13] MAUREL W., 3D modelling of the human upper limb including the biomechanics of joints, muscles and soft tissues, PhD thesis, 1998, École Polytechnique Fédéral de Lausanne Press, Lausanne.
  • [14] MROZOWSKI J., AWREJCEWICZ J., Podstawy biomechaniki, Politechnika Łódzka, Łódź, 2004.
  • [15] MURRAY W.M., BUCHANAN T.S., DELP S.L., Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions, Journal of Biomechanics, 2002, 35, 19-26.
  • [16] NARICI M., Human skeletal muscle architecture studied in vivo by non-invasive imaging techniques: functional significance and applications, Journal of Electromyography and Kinesiology, 1999, 9, 97-103.
  • [17] PLATZER W., The handbook atlas of man's anatomy: the locomotor aparatus. Vol. 2 (in Polish), Słotwiński Verlag, Brema, 1997.
  • [18] RAIKOVA R.T., Investigation of the peculiarities of two-joint muscles using a 3 DOF model of the human upper limb in the sagittal plane: an optimization approach, Computer Methods in Biomechanics and Biomedical Engineering, 2001, 4, 463-490.
  • [19] REHBINDER H., MARTIN C., A control theoretic model of the forearm, Journal of Biomechanics, 2001, 34, 741-748.
  • [20] VEEGER H.E.J., van der HELM F.C.T., van der WOUDE L.H.V., PRONK G.M., ROZENDAL R.H., Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism, Journal of Biomechanics, 1991, 24, 615-629.
  • [21] VEEGER H.E.J., YU B., AN K.N., ROZENDAL R.H., Parameters for modelling the upper extremity, Journal of Biomechanics, 1997, 30, 647-652.
  • [22] WINTER D.A., Biomechanics and motor control of human movement, second edition, John Wiley & Sons, Inc., Toronto, 1990.
  • [23] WOJNICZ W., WITTBRODT E., Analysis of muscles behaviour. Part I. The computational model of muscle, Acta of Bioengineering and Biomechanics, 2009, Vol. 11, No. 4, 15-21.
  • [24] WOJNICZ W., Modelowanie i symulacja zachowania zespołu mięśni szkieletowych układu ramię-przedramię, PhD Thesis, 2009, Technical University of Łódź, Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBA-0009-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.