Identyfikatory
Warianty tytułu
Certain peculiarities of the genetic algorithms based on logistic issues
Języki publikacji
Abstrakty
The aim of the following article is to systematize the concepts connected with modern genetic algorithms together with presenting examples of their applications in logistic issues. Using appropriate tools for solving logistic problems is a basic condition of development and/or endurance on the market with an intensive competition. According to the author, modern genetic algorithms are effective optimizing, ransacking and teaching tools which may have a broader use in logistics. This paper also discusses the matter of genetic algorithm's parameters as a factor determining the effectiveness of their application in logistic issues. The weak and strong points of genetic algorithms in the context of their practical usage has also been pointed out. Presented article is based on literature studies concerning modern concepts of genetic algorithms and their applications.
Czasopismo
Rocznik
Tom
Strony
129--138
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Politechnika Białostocka, Wydział Zarządzania, Katedra Informatyki Gospodarczej i Logistyki
Bibliografia
- 1. Arabas J., 2001. Wykłady z algorytmów ewolucyjnych, WNT, Warszawa.
- 2. Arabas J., Michalewicz Z., Mulawka J., 1994. GAVaPS-a genetic algorithm with varying population size. Evolutionary Computation, IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference on 27-29, June 1994, s. 73 – 78.
- 3. Chodak G., Kwaśnicki W., 2002. Zastosowanie algorytmów genetycznych w prognozowaniu popytu. Gospodarka Materialowa & Logistyka, nr. 4.
- 4. Deb K., Agrawal S., 1998. Understanding interactions among genetic algorithm parameters, in: W. Banzhaf, C. Reeves (Eds.), Foundations of Genetic Algorithms 5, Morgan Kaufmann, San Francisco, CA, s. 265–286.
- 5. Ficoń K., 2008. Logistyka ekonomiczna. Procesy logistyczne, BEL Studio Sp. z o.o., Warszawa.
- 6. Goldberg D. E., 1995. Algorytmy genetyczne i ich zastosowania. WNT, Warszawa.
- 7. Lobo F. G., Goldberg D. E., 2004. The parameter-less genetic algorithm in practice, Information Sciences 167, s. 217–232.
- 8. Michnowicz E., 2009. Problem komiwojażera dla kilku centrów dystrybucji. Prace Naukowe Politechniki Warszawskiej, Warszawa.
- 9. Michalewicz Z., 1999. Algorytmy genetyczne + struktury danych = programy ewolucyjne. WNT, Warszawa.
- 10. Rutkowski L., 2005. Metody i techniki sztucznej inteligencji. PWN SA, Warszawa
- 11. Srinivas M., Patnaik L. M. 1994, Adaptive Probabilities of Crossover and Mutation In Genetic Algorithms, IEEE Transactions on Systems, Man and Cybernetics 24(4).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB9-0010-0009