PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanometrologia optoelektroniczna

Identyfikatory
Warianty tytułu
EN
Optoelectronic nanometrology
Języki publikacji
PL
Abstrakty
PL
Infrastruktura metrologiczna jest konieczna do pomyślnego rozwoju nanotechnologii. Istniejące dotychczas rozwiązania metrologiczne są z reguły nieodpowiednie dla nanoskali i jest zapotrzebowanie na nowe rozwiązania osiągające nanodokładność i nadające się do badania nanoobiektów. Wśród nich metody oparte na optoelektronice są bardzo obiecujące ze względu na swój duży potencjał, relatywnie niski koszt, wysoką niezawodność i łatwość zastosowania. Celem artykułu jest przegląd optoelektronicznych metod metrologicznych, które są obiecujące dla zastosowań w nanotechnologii. Kładzimy nacisk na słowo "optoelektronika", ponieważ pomimo że prezentowane metody są optyczne w swojej zasadzie działania, ich relizacja i uzyskany wynik zależy od optoelektroniki.
EN
Metrology infrastructure is necessary for sucessful application of nanotechnology. Metrological solutions previously developed are inappropiate for nanoscale and there is need for new methods capable of reaching nanoaccuracy and investigating nanoobjects. Among them, optoelectronic methods are greatly promising due to their great potential, relative low cost, high reliability and ease of application. The purpose of this paper is to review optoelectronic metrological methods with expected applications in nanotechnology. We emphasis optoelectronics because even if methods presented are in principle optical, their realisation and performance depends on optoelectronics.
Rocznik
Tom
Strony
15--20
Opis fizyczny
Bibliogr. 80 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] E. Abbe. Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv fuer mikroskopische Anatomie, 9: 413–468, 1873.
  • [2] A. Ashkin. Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences, 94(10): 4853–4860, 1997.
  • [3] A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11(5): 288, 1986.
  • [4] D. Barchiesi, A.-S. Grimault, T. Grosges, D. Mac’ias, and A. Vial. Principle of Apertureless Scanning Near-Field Optical Microscopy: On the Way to the Optical Metrology of Nanostructures. J. Korean Phys. Soc., 47(1): 166–174, 2005.
  • [5] M. Bates, B. Huang, G.T. Dempsey, and X. Zhuang. Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes. Science, 317(5845): 1749–1753, 2007.
  • [6] E. Betzig, M. Isaacson, and A. Lewis. Collection mode near-field scanning optical microscopy. Appl. Phys. Lett., 51: 2088–2090, 1987.
  • [7] E. Betzig, G.H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hess. Imaging Intracellular Fluorescent Proteins at Nanometer esolution. Science, 313(5793): 1642–1645, 2006.
  • [8] C.F. Bohren and D.R. Huffman. Absorption and Scattering of Light by Small Particles. John Wiley and Sons, Inc., 1983.
  • [9] D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers. Science, 297(5584): 1160–1163, 2002.
  • [10] S.I. Bozhevolnyi. Near-field mapping of surface polariton fields. Journal of Microscopy, 202(2): 313–319, 2001.
  • [11] G. Bryant, C. Abeynayake, and J. Thomas. Improved particle size distribution measurements using multiangle dynamic light scattering. 2. refinements and applications. Langmuir, 12(26): 6224–6228, 1996.
  • [12] H. C.-C. Optical tweezers as sub-pico-newton force transducers. Optics Communications, 195: 41–48(8), August 2001.
  • [13] S. Chu, Bjorkholm, A. Ashkin, and A. Cable. Experimental observation of optically trapped atoms. Phys. Rev. Lett., 57(3): 314–317, 1986.
  • [14] N.A. Clark, J.H. Lunacek, and G.B. Benedek. A study of brownian motion using light scattering. American Journal of Physics, 38(5): 575–585, 1970.
  • [15] D. Courjon, K. Sarayeddine, and M. Spajer. Scanning tunneling optical microscopy. Opt. Commun., 71: 23–28, 1989.
  • [16] W. Denk and W.W. Webb. Optical measurement of picometer displacements of transparent microscopic objects. Appl. Opt., 29(16): 2382, 1990.
  • [17] R. Dunn. Near-field scanning optical microscopy. Chem. Rev., 99: 2891–2898, 1999.
  • [18] U. Durig, D. W. Pohl, and F. Rohner. Near-field optical-scanning microscopy. Journal of Applied Physics, 59(10): 3318–3327, 1986.
  • [19] N. Fang, H. Lee, C. Sun, and X. Zhang. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science, 308(5721): 534–537, 2005.
  • [20] U. Fischer and D. Pohl. Observation of single-particle plasmons by nearfield optical microscopy. Phys. Rev. Lett., 62: 458–461, 1989.
  • [21] B.J. Frisken. Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl. Opt., 40(24): 4087–4091, 2001.
  • [22] T. Förster. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik, 437(1-2): 55–75, 1948.
  • [23] L.P. Ghislain, N.A. Switz, and W.W. Webb. Measurement of small forces using an optical trap. Review of Scientific Instruments, 65(9): 2762–2768, 1994.
  • [24] F. Gittes and C.F. Schmidt. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett., 23(1): 7–9, 1998.
  • [25] M.G.L. Gustafsson. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences, 102(37): 13081–13086, 2005.
  • [26] G.A.N.D. Hamann, H.F. Near-field fluorescence imaging by localized field enhancement near a sharp probe tip. Appl. Phys. Lett., 76: 1953–1955, 2000.
  • [27] A. Hartschuh, E. Sanchez, S. Xie, and L. Novotny. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett., 90:095503–1–095503–4, 2003.
  • [28] B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. Martin, and D. Pohl. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys., 112: 7761–7774, 2000.
  • [29] R. Heintzmann, T.M. Jovin, and C. Cremer. Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A, 19(8): 1599–1609, 2002.
  • [30] S.W. Hell. Far-Field Optical Nanoscopy. Science, 316: 1153–1158, 2007.
  • [31] S.W. Hell and M. Kroug. Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit. Applied Physics B: Lasers and Optics, 60(5): 495–497, May 1995.
  • [32] S.W. Hell and J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19(11): 780, 1994.
  • [33] S.T. Hess, T.P.K. Girirajan, and M.D. Mason. Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy. Biophys. J., 91(11): 4258–4272, 2006.
  • [34] M. Hofmann, C. Eggeling, S. Jakobs, and S.W. Hell. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences, 102(49): 17565–17569, 2005.
  • [35] B. Huang, W. Wang, M. Bates, and X  Zhuang. Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy. Science, 319(5864): 810–813, 2008.
  • [36] F.V. Ignatovich and L. Novotny. Experimental study of nanoparticle detection by optical gradient forces. Review of Scientific Instruments, 74(12): 5231–5235, 2003.
  • [37] F.V. Ignatovich and L. Novotny. Real-time and background-free detection of nanoscale particles. Physical Review Letters, 96(1): 013901, 2006.
  • [38] F.V. Ignatovich, D. Topham, and L. Novotny. Optical Detection of Single Nanoparticles and Viruses. Selected Topics in Quantum Electronics, IEEE Journal of, 12: 1292–1300, 2006.
  • [39] Y. Inouye and S. Kawata. Near-field scanning optical microscope with a metallic probe tip. Opt. Lett., 19: 159–161, 1994.
  • [40] C.E. Jordan, S.J. Stranick, L.J. Richter, and R.R. Cavanagh. Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode. Journal of Applied Physics, 86(5): 2785–2789, 1999.
  • [41] S. Kamimura. Direct measurement of nanometric displacement under an optical microscope. Appl. Opt., 26(16): 3425, 1987.
  • [42] Y. Kawata, X.C., and W. Denk. Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip. J. Appl. Phys., 85: 1294–1301, 1999.
  • [43] K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys Chem B, 107(3): 668–677, 2003.
  • [44] J. Kim and K.-B. Song. Recent progress of nano-technology with NSOM. Micron, 38(4): 409–426, 2007.
  • [45] T.A. Klar, S. Jakobs, M. Dyba, A. Egner, and S.W. Hell. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences, 97(15): 8206–8210, 2000.
  • [46] K. Kneipp, H. Kneipp, P. Corio, S. Brown, K. Shafer, J. Motz, L. Perelman, E. Hanlon, A. Marucci, G. Dresselhaus, and M. Dresselhaus. Surface-enhanced and normal Stokes and anti-Stokes Raman spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett., 84: 3470–3473, 2000.
  • [47] K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett., 78: 1667–1670, 1997.
  • [48] B. Knoll and F. Keilmann. Near-field probing of vibrational absorption for chemical microscopy. Nature, 399: 134–136, 1999.
  • [49] D.E. Koppel. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants. The Journal of Chemical Physics, 57(11): 4814–4820, 1972.
  • [50] J.R. Lakowicz. Principles of Fluorescence Spectroscopy. Plenum Publishing Corporation, 1999.
  • [51] M. Lang, P. Fordyce, A. Engh, K. Neuman, and S. Block. Simultaneous, coincident optical trapping and single molecule fluorescence. Nature Methods, 1(2): 133–139, 2004.
  • [52] M.J. Lang and S.M. Block. Resource letter: Lbot-1: Laser-based optical tweezers. American Journal of Physics, 71(3): 201–215, 2003.
  • [53] A. Lewis, M. Isaacsson, A. Harootunian, and A. Murray. Development of a 500 Å spatial resolution light microscope. I. Light is efficiently transmitted through l/16 diameter apertures. Ultramicroscopy, 13: 227–231, 1984.
  • [54] Z. Liu, H . Lee, Y. Xiong, C. Sun, and X. Zhang. Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects. Science, 315(5819): 1686–, 2007.
  • [55] R. Merkel. Force spectroscopy on single passive biomolecules and single biomolecular bonds. Physics Reports, 346: 343–385, 2001.
  • [56] K.C. Neuman and S.M. Block. Optical trapping. Review of Scientific Instruments, 75(9): 2787–2809, 2004.
  • [57] E.S. Nie, S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275: 1102–1105, 1997.
  • [58] L. Novotny and B. Hecht. Principles of Nano-Optics. Cambridge University Press, 2006.
  • [59] L. Nugent-Glandorf and T.T. Perkins. Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection. Opt. Lett., 29(22): 2611–2613, 2004.
  • [60] R.J. Ober, S, Ram, and E.S. Ward. Localization accuracy in single-molecule microscopy. Biophys. J., 86(2): 1185–1200, 2004.
  • [61] R. Pecora, editor. Dynamic Light Scattering, Applications to Photon Correlation Spectroscopy. Plenum Press, New York, 1985.
  • [62] D.W. Pohl, W. Denk, and M. Lanz. Optical stethoscopy: Image recording with resolution lambda/20. Applied Physics Letters, 44(7): 651–653, 1984.
  • [63] S. Ram, E.S. Ward, and R.J. Ober. Beyond Rayleigh’s criterion: A resolution measure with application to single-molecule microscopy. Proceedings of the National Academy of Sciences, 103(12): 4457–4462, 2006.
  • [64] R. Rayleigh. Investigations in optics with special reference to the spectroscope. Phil. Mag., 8: 261–274, 1879.
  • [65] M.J. Rust, M. Bates, and X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3: 793, 2006.
  • [66] E. Sanchez, L. Novotny, and X. Xie. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett., 82: 4014–4017, 1999.
  • [67] B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson. Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection. Appl. Phys. Lett., 85(21): 4854–4856, 2004.
  • [68] I.I. Smolyaninov, Y.-J. Hung, and C.C. Davis. Magnifying Superlens in the Visible Frequency Range. Science, 315(5819): 1699–1701, 2007.
  • [69] C. Sonnichsen, B.M. Reinhard, J. Liphardt, and P. Alivisatos. A Molecular Ruler Based on Plasmon Coupling of Single Gold and Silver Nanoparticles. Nat. Biotechnol., 23(6): 741–745, 2005.
  • [70] P.R.H. Stark, A.E. Halleck, and D.N. Larson. Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures. Proceedings of the National Academy of Sciences, 104(48): 18902–18906, 2007.
  • [71] T. Sugiura. Laser trapping of a metallic probe for near field microscopy. In S. Kawata, editor, Near-Field Optics and Surface Plasmon Polaritons, Edited by Satoshi Kawata, Topics in Applied Physics, vol. 81, pp.143-161, pages 143–161, 2001.
  • [72] T. Sugiura, S. Kawata, and T. Okada. Fluorescence imaging with a laser trapping scanning near field optical microscope. J. Microsc., 194: 291–294, 1999.
  • [73] H.C. van de Hulst. Light Scattering by Small Particles. Dover Publications, Inc., Leiden, 1957.
  • [74] M.A. van Dijk, M. Lippitz, D. Stolwijk, and M. Orrit. A common-path interferometer for time-resolved and shot-noise-limited detection of single nanoparticles. Opt. Express, 15(5): 2273–2287, 2007.
  • [75] R.P. van Duyne. Nanoparticle Optics: From Surface-Enhanced Raman Scattering, to Localized Surface Plasmon Resonance Spectroscopy, to Single Nanoparticle Sensors. APS Meeting Abstracts, pages 34001–+, Mar. 2004.
  • [76] K. Visscher, S. Gross, and S. Block. Construction of multiple-beam optical traps withnanometer-resolution position sensing. Selected Topics in Quantum Electronics, IEEE Journal of, 2: 1066–1076, 1996.
  • [77] H. Watanabe, A. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata. Tipenhanced near-field Raman analysis of tip-pressurized adenine molecule. Phys. Rev. B, 69: 155418–1–155418–11, 2004.
  • [78] J. Wessel. Surface-enhanced optical microscopy. J. Opt. Soc. Am. B, 2: 1538–1540, 1985.
  • [79] V. Westphal and S. W. Hell. Nanoscale resolution in the focal plane of an optical microscope. Physical Review Letters, 94(14): 143903, 2005.
  • [80] F. Zenhausern, M. O’Boyle, and H. Wickramasinghe. Apertureless near-field optical microscope. Appl. Phys. Lett., 65: 1623–1625, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB9-0009-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.