PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mode I crack problems by coupled fractal finite element and meshfree method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a coupling technique for integrating the fractal finite element method (FFEM) with element-free Galerkin method (EFGM) for analyzing homogeneous, isotropic, and two-dimensional linear-elastic cracked structures subjected to Mode I loading condition. FFEM is adopted for discretization of domain close to the crack tip and EFGM is adopted in the rest of the domain. In the transition region interface elements are employed. The shape functions within interface elements which comprise both the element-free Galerkin and the finite element shape functions, satisfy the consistency condition thus ensuring convergence of the proposed coupled FFEM-EFGM. The proposed method combines the best features of FFEM and EFGM, in the sense that no structured mesh or special enriched basis functions are necessary and no post-processing (employing any path-independent integrals) is needed to determine fracture parameters such as stress-intensity factors (SIFs) and T-stress. The numerical results show that SIFs and T-stress obtained using the proposed method, are in excellent agreement with the reference solutions for the structural and crack geometries considered in the present study. Also a parametric study is carried out to examine the effects of the integration order, the similarity ratio, the number of transformation terms, and the crack-length to width ratio, on the quality of the numerical solutions.
Rocznik
Strony
113--135
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Structural Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Madras, Chennai 600 036, India, bnrao@iitm.ac.in
Bibliografia
  • [1] C.B. Hu, Y.T. Li, J. Gong. The Transition Method of Geometrically Similar Element for Dynamic Crack Problem. Key Engineering Materials, 145-149 (Part 1): 267-272, 1998.
  • [2] C.M. Song, J.P. Wolf. Semi-Analytical Representation of Stress Singularities as Occurring in Cracks in Anisotropic Multi-Materials with the Scaled Boundary Finite-Element Method. Computers & Structures, 80: 83-197, 2002.
  • [3] A.Y.T. Leung, R.K.L. Su. Mode I Crack Problems by Fractal Two-Level Finite Element Methods. Engineering Fracture Mechanics, 48(6): 847-856, 1994.
  • [4] A.Y.T. Leung, R.K.L. Su. Mixed Mode Two-Dimensional Crack Problems by Fractal Two-Level Finite Element Method. Engineering Fracture Mechanics, 51(6): 889-895, 1995.
  • [5] A.Y.T. Leung, R.K.L. Su. Two-Level Finite Element Study of Axisymmetric Cracks. International Journal of Fracture, 89(2): 193-203, 1998.
  • [6] A.Y.T. Leung, R.K.L. Su. Applications of Fractal Two-Level Finite Element Method for 2D Cracks. Microcomputers in Civil Engineering, 11(4): 249-257, 1996.
  • [7] A.Y.T. Leung, R.K.L. Su. Fractal Two-Level Finite Element Method for Cracked Kirchhoff's Plates using DKT Elements. Engineering Fracture Mechanics, 54(5): 703-711, 1996.
  • [8] A.Y.T. Leung, R.K.L. Su. Fractal Two-Level Finite Element Analysis of Cracked Reissner's Plate. Thin-Walled Structures, 24(4): 315-334, 1996.
  • [9] R.K.L. Su, A.Y.T. Leung. Mixed Mode Cracks in Reissner Plates. International Journal of Fracture, 107(3): 235-257, 2001.
  • [10] R.K.L. Su, H.Y. Sun Numerical Solution of Cracked Thin Plates Subjected to Bending, Twisting and Shear Loads. International Journal of Fracture, 117(4): 323-335, 2002.
  • [11] A.Y.T. Leung, R.K.L. Su. Eigenfunction Expansion for Penny-Shaped and Circumferential Cracks. International Journal of Fracture, 89(3): 205-222, 1998.
  • [12] Leung, A.Y.T., and Su, R.K.L., Fractal Two-Level Finite Element Method for Free Vibration of Cracked Beams. Journal of Shock and Vibration, Vol. 5 (??), pp. 61-68, 1998.
  • [13] A.Y.T. Leung, R.K.L. Su. A Numerical Study of Singular Stress Field of 3-D Cracks. Finite Elements in Analysis and Design, 18: 389-401, 1995.
  • [14] R.K.L. Su, H.Y. Sun. Numerical Solutions of Two-Dimensional Anisotropic Crack Problems. International Journal of Solids and Structures, 40: 4615-4635, 2003.
  • [15] J.F. Xie, S.L. Fok, A.Y.T. Leung. A Parametric Study on the Fractal Finite Element Method for Two-Dimensional Crack Problems. International Journal for Numerical Methods in Engineering, 58: 631-642, 2003.
  • [16] R.K.L. Su, A.Y.T. Leung. Three-Dimensional Mixed Mode Analysis of a Cracked Body by Fractal Finite Element Method. International Journal of Fracture, 110(1): 1-20, 2001.
  • [17] M.L. Williams. On the Stress Distribution at the Base of a Stationary Crack. ASME Journal of Applied Mechanics, 24: 109-114, 1957.
  • [18] R.J. Hartranft, G.C. Sih. The Use of Eigenfunction Expansions in the General Solution of Three-Dimensional Crack Problems. Journal of Mathematics and Mechanics, 19: 123-138, 1969.
  • [19] T. Belytschko, Y.Y. Lu, L. Gu. Element-free Galerkin Methods. International Journal of Numerical Methods in Engineering, 37: 229-256, 1994.
  • [20] Y.Y. Lu, T. Belytschko, L. Gu. A New Implementation of the Element Free Galerkin Method. Computer Methods in Applied Mechanics and Engineering, 113: 397-414, 1994.
  • [21] T. Belytschko, Y.Y. Lu, L. Gu. Crack Propagation by Element-Free Galerkin Methods. Engineering Fracture Mechanics, 51(2): 295-315, 1995.
  • [22] T. Belytschko, D. Organ, Y. Krongauz. Coupled finite element-element-free Galerkin Method. Computational Mechanics, 17: 186-195, 1995.
  • [23] Y. Krongauz, T. Belytschko. Enforcement of Essential Boundary Conditions in Meshless Approximations Using Finite Elements. Computer Methods in Applied Mechanics and Engineering, 131(1-2): 133-145, 1996.
  • [24] P. Lancaster, K. Salkauskas. Surfaces Generated by Moving Least Squares Methods. Mathematics of Computation, 37: 141-158, 1981.
  • [25J Y.Y. Lu, T. Belytschko, W.K. Liu. A variationally coupled FE-BE method for elasticity and fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 85: 21-37, 1991.
  • [26] B.N. Rao, S. Rahman. An Efficient Meshless Method for Fracture Analysis of Cracks. Computational Mechanics, 26: 398-408, 2000.
  • [27] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139: 3-47, 1996.
  • [28] I.V. Singh. A numerical solution of composite heat transfer problems using meshless method. International Journal of Heat and Mass Transfer, 47: 2123-2138, 2004.
  • [29] M. Fleming, Y.A. Chu, B. Moran, T. Belytschko, Y.Y. Lu, L. Gu. Enriched Element-free Galerkin Methods for Crack-Tip Fields. International Journal of Numerical Methods in Engineering, 40: 1483-1504, 1997.
  • [30] D.J. Organ, M. Fleming, T. Terry, T. Belytschko. Continuous Meshless Approximations for Non-Convex Bodies by Diffraction and Transparency. Computational Mechanics, 18: 225-235, 1996.
  • [31] R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, 1988.
  • [32] F.P. Preparata, M.I. Shamos. Computational Geometry: An Introduction. Springer, New York, 1990.
  • [33] J.S. Chen, H.P. Wang. New Boundary Condition Treatments in Meshfree Computation of Contact Problems. Computer Methods in Applied Mechanics and Engineering, 187(3-4): 441-468, 2000.
  • [34] H. Tada, P.C. Paris, G.R. Irwin. The Stress Analysis of Cracks Handbook. 3 edition, ASM International, 2000.
  • [35] T. Fett. T-Stresses in Rectangular Plates and Circular Disks. Engineering Fracture Mechanics, 60(5-6): 631-652, 1998.
  • [36] T.L. Anderson. Fracture Mechanics: Fundamentals and Applications. Second Edition, CRC Press, 2005.
  • [37] J.P. Benthem, W.T. Koiter. Mechanics and fracture I: Method of Analysis and Solutions of Crack Problems, G. C. Sih (ed.), Noordhoff International Publishing Leyden, pp. 131-178, 1973.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB8-0022-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.