PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Root finding method for problems of elastodynamics

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a simple and efficient method for finding complex roots of dispersion equations occurring in many problems of elastodynamics. The method is characterized by high accuracy in root finding and absence of restrictions on function representation. The essence of the method is explained geometrically; initial guesses are found as the solutions to the appropriate problems of elastostatics. Numerical solutions to dispersion equations are obtained for two elastic isotropic waveguides: a plate of infinite cross-section and a rod of rectangular cross-section. For an infinite plate, the calculated results are in full conformity with those obtained by Newton-Raphson and bisection methods. For a waveguide of rectangular cross-section, the earlier unsolved problem of finding complex roots of dispersion equations is solved by the proposed method.
Rocznik
Strony
3--11
Opis fizyczny
Bibliogr. 17 poz., tab., wykr.
Twórcy
Bibliografia
  • [1] R.T. Aggarawal. Axially symmetric vibrations of a finite isotropic disk. J. Acoust. Soc. Amer., 24: 463-467, 1952.
  • [2] B.A. Auld. Acoustic fields and waves in solids. Robert E. Krieger Publishing, Malabar, 1990.
  • [3] A.A. Bondarenko. Normal wave propagation in a rectangular elastic waveguide. In: Proceedings of the 22nd International Congress of Theoretical and Applied Mechanics (ICTAM2008), Adelaide, Australia, August 24-30, 2008, paper No. 10932, CD-ROM, 2008.
  • [4] V.T. Grinchenko, V.V. Meleshko. Harmonic vibrations and waves in elastic bodies. Naukova Dumka, Kiev, 1981.
  • [5] W.B. Fraser. Stress wave propagation in rectangular bars. Int. J. Solids Structures, 5: 379-397, 1969.
  • [6] A.H. Holden. Longitudinal modes of elastic waves in isotropic cylinders and slabs. Bell System Tech. J., 30: 956-969, 1951.
  • [7] F. Honarvar, E. Enjilela, A.N. Sinclair. An alternative method for plotting dispersion curves. Ultrasonics, 49: 15-18, 2009.
  • [8] E.V. Kastrzhitskaya, V.V. Meleshko. Propagation of harmonic waves in an elastic rectangular waveguide. Int. Appl. Mech., 26: 773-781, 1990.
  • [9] M.J.S. Lowe. Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans. Ultrason.Ferroelect. Freq. Cont., 42: 525-542, 1995.
  • [10] A.K. Mal. Guided waves in layered solids with interface zones. Int. J. Eng. Sci., 26: 873-881, 1988.
  • [11] R.D. Mindlin. An introduction to the mathematical theory of vibrations of elastic plates. World Scientific, Singapore, 2006.
  • [12] R.W. Morse. Dispersion of compressional waves in isotropic rods of rectangular cross-section. J. Acoust. Soc. Amer., 20: 833-838, 1948.
  • [13] D.S. Potter, C.D. Leedham. Normalized numerical solutions for Rayleigh's frequency equation. J. Acoust. Soc. Amer., 41: 148-153, 1967.
  • [14] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling. Numerical recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, 1992.
  • [15] N.G. Stephen, P.J. Wang. Saint-Venant decay rates for the rectangular cross-section rod. Trans. ASME. J. Appl. Mech., 71: 429-433, 2004.
  • [16] R. Wojnar. Homogeneous solutions and energy of a linear anisotropic elastic strip. Arch. Mech., 40: 857-869, 1988.
  • [17] A.N. Zlatin. On the roots of certain trasncendental equation occurring in the theory of elasticity (in Russian). Prikl. Mekh., 16: 69-74, 1980.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB8-0017-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.