PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trefftz function for solving a quasi-static inverse problem of thermal stresses

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of thermal stresses in a hollow cylinder is considered. The problem is two-dimensional and the cross-section of the hollow cylinder is approximated as a long and thin rectangle as the ratio of the inner and outer radiuses is close to one. On the outer boundary of the hollow cylinder the heat source moves with a constant velocity. In the case of the rectangle the heat source moves on the upper side and the conditions of eąuality of temperatures and heat fluxes are assumed on the left and right boundaries. The stresses are to be found basing on the temperature measured inside the considered region, which means that an inverse problem is considered. Both for the temperature field and the displacements and stresses the finite element method is used. Thermal displacement potentials are introduced to find displacements and stresses. In order to construct the base functions in each element the Trefftz functions are used. For the temperature field the time-space finite elements are used and for the thermal displacement potentials the spatial elements are applied. Thanks to the use of the Trefftz functions a low-order approximation has given a solution very close to the exact one.
Rocznik
Strony
251--266
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
autor
  • Faculty of Management and Computer Modelling, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7,25-314 Kielce, Poland matam@tu.kielce.pl, beatam@tu.kielce.pl, grysa@tu.kielce.pl
Bibliografia
  • [1] M. Ciałkowski. Treffz functions as basis functions of FEM in application to solution of inverse heat conduction problem. Computer Assisted Mechanics and Engineering Sciences, 8: 247-260, 2001.
  • [2] M. Ciałkowski, Solution of inverse heat conduction problem with use new type of fnite element base functions. In: B.T. Maruszewski, W. Muschik A. Radowicz (eds.), Proceedings of the International Symposium on Trends in Continuum Physics. World Scientifc Publishing, Singapore, New Jersey, London, Hong Kong, pp. 64-78, 1999.
  • [3] M. Ciałkowski, A. Frąckowiak. Heat functions and their application to solving heat conduction and mechanical problems (in Polish). Wydawnictwo Politechniki Poznańskiej, Poznań, 2000.
  • [4] M. Ciałkowski, A. Frąckowiak. Solution of the stationary 2D inyerse heat conduction problem by Trefftz Method. Journal of Thermal Science, 11(2): 148-162, 2002.
  • [5] M. Ciałkowski, A. Frąckowiak. Heat functions and related in solving chosen equations of mechanics. Part I. Solving some differential equations using the inversion operations (in Polish). Studia i Materiały. Technika 3, pp. 7-69, Uniwersytet Zielonogórski, Zielona Góra, 2003.
  • [6] M. Ciałkowski, A. Frąckowiak, K. Grysa. Physical regularization for inverse problems of stationary heat conduction. J. Inv. III-Posed Problems, 15: 1-18, 2007.
  • [7] M. Ciałkowski, A. Frąckowiak, J. Kołodziej. Investigation of laminar flow through solution of inverse problem for heat conduction equation. Mechanics Research Communications, 28(6): 623-628, 2001.
  • [8] M. Ciałkowski, S. Futakiewicz, L. Hożejowski. Method of heat polynomials in solying the inyerse heat conduction problems. ZAMM, 79: 709-710, 1999.
  • [9] M. Ciałkowski, S. Futakiewicz, L. Hożejowski. Heat polynomials applied to direct and inyerse heat conduction problems. In: B.T. Maruszewski, W. Muschik A. Radowicz (eds.), Proceedings of the International Symposium on Trends in Continuum Physics. World Scientific Publishing, Singapore, New Jersey, London, Hong Kong, pp. 79-88, 1999.
  • [10] B.H. Dennis, G.S. Dulikrayich, S. Yoshimura. A Finite Element Formulation for the Determination of Unknown Boundary Conditions for 3-D Steady Thermoelastic Problems. ASME Journal of Heat Transfer, 126(1): 110-119, 2004.
  • [11] K. Grysa, B. Maciejewska. Application of the modified finite elements method to identification of moving heat source. In: A. Nowak, R. Białecki, G. Węcel (eds.), EUTOTERM 82, Numerical Heat Transfer 2005, Vol. 2, pp. 493-502, Gliwice-Kraków, Poland, Sept. 13-16, 2005.
  • [12] L. Hożejowski, S. Hożejowska, M. Sokała. Stability of solutions for some inverse heat conduction problems by heat functions method. Journal of Applied Mathematics and Mechanics ZAMM, 81: 499-500, 2001.
  • [13] L. Hożejowski, S. Hożejowska, M. Sokała. Evaluation of the Biot number with the use of heat functions. Proc. Appl. Math. Mech., 1: 349-350, 2002.
  • [14] B. Kruk, M. Sokała. Sensitivity coefficients and heat polynomials in the inverse heat conduction problems. ZAMM, 80(Supplement 3): 693-694, 2000.
  • [15] B. Kruk, M. Sokała. Sensitivity coefficients applied to two-dimensional transient inverse heat conduction problems. ZAMM, 81(Supplement 4): 945-946, 2001.
  • [16] B. Kruk, M. Sokała. Beck's procedure - Sensitivity of the algorithm to measurement error. Proc. Appl. Math. Mech., 2: 370-371, 2003.
  • [17] A. Maciąg. Trefftz functions for chosen direct and inverse problems of mechanics (in Polish). Wydawnictwo Politechniki Świętokrzyskiej, Kielce, 2009.
  • [18] B. Maciejewska. The transient temperature field in a rectangular area with moyable heat sources at its edge. JTAM, 42(4): 789-804, 2004.
  • [19] W. Nowacki. Teoria sprężystości. PWN, Warszawa, 1970.
  • [20] M. Piasecka, S. Hożejowska, M.E. Poniewski. Determination of local flow boiling heat transfer coefficient in narrow channel, Archwes of Thermodynamics, 24(2): 55-67, 2003.
  • [21] M. Piasecka, S. Hożejowska, M.E. Poniewski. Experimental evaluation of flow boiling incipience of subcooled aid in a narrow channel. International Journal of Heat and Fluid Flow, 25(2): 159-172, 2004.
  • [22] J. Taler. Analytical solution of the overdetermined inverse heat conduction problem with an application to monitoring thermal stresses. Heat and Mass Transfer, 33: 209-218, 1997.
  • [23] A.K. Tikhe, K.C. Deshmukh. Inyerse transient thermoelastic deformations in thin circular plates. Sadhana, 30(5): 661-671, 2005.
  • [24] Yu-Ching Yang, Un-Chia Chen, Win-Jin Chang. An inverse problem of coupled thermoelasticity in predicting heat flux and thermal stresses by strain measurement. Journal Of Thermal Stresses, 25(3): 265-281, 2002.
  • [25] R.M. Kushnir, A.V. Yasinskyi. Identification of the temperature field and stresses in a thermosensitive cylinder according to the surface strains. Materials Science, 43(6): 814-822, 2007.
  • [26] M. Bonnet, A. Constantinescu. Inverse problems in elasticity. Inverse Problems, 21: R1-R50, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB8-0009-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.