PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent developments in numerical homogenization

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with homogenization of non linear fibre-reinforced composites in the coupled thermo-mechanical field. For this kind of structures, i.e. inclusions randomly dispersed in a matrix, the self consistent methods are particularly suitable to describe the problem. Usually, in the framework of the self consistent scheme the homogenized material behaviour is obtained with a symbolic approach. For the non linear case, that method may become tedious. This paper presents a different, fully numerical procedure. The effective properties are determined by minimizing a functional expressing the difference (in some chosen norm) between the solution of the heterogeneous problem and the equivalent homogenous one. The heterogeneous problem is solved with the Finite Element method, while the second one has its analytical solution. The two solutions are written as a function of the (unknown) effective parameters, so that the final global solution is found by iterating between the two single solutions. Further, it is shown that the considered homogenization scheme can be seen as an inverse problem and Artificial Neural Networks are used to solve it.
Rocznik
Strony
161--183
Opis fizyczny
Bibliogr. 52 poz., il., tab., wykr.,
Twórcy
autor
autor
  • Department of Structural and Transportation Engineering, University of Padua, Via Marzolo 9, 35131 Padua
Bibliografia
  • [1] E.W.B. Engauist, X. Li, W. Ren, E. Yanden-Eijnden. Heterogeneous multiscale methods: A review. Communications in Computational Physics, 2(3): 367-450, 2007.
  • [2] A. Bensoussan, J.L. Lions, G. Papanicolau. Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam, 1976.
  • [3] E. Sanchez-Palencia. Non-Homogeneous Media and Vibration; Springer-Verlag, Berlin, 1980.
  • [4] W. Yoigt. Uber die Beziehungzwischen den beiden Elastizitats konstanten isotroper Korper. Wied. Ann., 38: 573-587, 1889.
  • [5] A. Reuss. Berechnung del Fliessgrenze von Mischkristallen auf Grundder Plastizitat bedingung fur Einkristalle. Z. Angew. Math. Mech., 9: 49-58, 1929.
  • [6] Z. Hashin, S. Shtrikman. A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids, 10: 343-352, 1962.
  • [7] Z. Hashin, S. Shtrikman. On some variational principles in anisotropic and nonhoniogeneous elasticity. J. Mech. Phys. Solids, 10: 335-342, 1962.
  • [8] Z. Hashin, S. Shtrikman. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids, 11: 127-140, 1963.
  • [9] D.A.G. Bruggeman. Berechnung yerschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielek-trizitatskonstanten und Leitfahigkeitn der Mischkorper aus isotropen Substanzen. Ann. Phys., 24: 636-679, 1935.
  • [10] B. Budiansky. On the elastic module of some heterogeneous materials. J. Mech. Phys. Solids, 13, 223-227, 1965.
  • [11] A.V. Hershey. The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME J. Appl. Mech., 21, 236-240, 1954.
  • [12] R. Hill. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 13: 213-222, 1965.
  • [13] E. Króner. Berechnung der elastischen Konstanten des Yielkristalls aus den Konstanten des Einkristalls. Z. Phys., 151: 504-518, 1958.
  • [14] P. Suquet. Analyse limite et homogeneisation. C. R. Acad. Sci. Paris II, 295: 1355-1358, 1983.
  • [15] P. Suquet. Element of homogemization for inelastic solid mechanics. In: E. Sanchez-Palencia, A. Zaoui, eds., Homogenization technigues for composite media. Lecture Notes in Physics, 272, pp. 193-278, Springer Verlag, New York, 1985.
  • [16] G.A. Francfort. Homogenisation and Fast Oscillations in Linear Thermoelasticity. In: R.Lewis, E.Hinton, P.Betess, B.Schrefler, eds., Numerical Methods for Transient and Coupled Problems, pp. 382-392, Pineridge Press, Swansea, 1984.
  • [17] C. Boutin. Microstructural influence on heat conduction. Int. J. Heat Mass Transfer, 38(17), 3181-3195, 1995.
  • [18] D.P. Boso, M. Lefik, B.A. Schrefler. Homogenisation methods for the thermomechanical analysis of NbsSn strand. Cryogenics, 46(7-8): 569-580, 2006.
  • [19] D.P. Boso, M. Lefik, B.A. Schrefler. A multilevel homogenised model for superconducting strand thermomechanics. Cryogenics, 45(4): 259-271, 2005.
  • [20] J.F.W. Bishop, R. Hill. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Phil. Mag., 42: 414-427, 1951.
  • [21] J.F.W. Bishop, R. Hill. A theoretical derivation of the plastic properties of a polycrystalline face-center metal. Phil. Mag., 42, 1298-1307, 1951.
  • [22] J.R. Willis. Variational estimates for the overall response of an inhomogeneous nonlinear dielectric. In: J.L. Ericksen, D. Kinderlehrer, R. Kohn, J.-L. Lions, eds., Homogeneization and Effective Module of Materials and Media, pp. 247-263, Springer-Verlag, New York, 1986.
  • [23] D.R.S. Talbot, J.R. Willis. Variational principles for inhomogeneous non-linear media. IMA J. Appl. Math., 35: 39-54, 1985.
  • [24] P. Ponte Castaneda. The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids, 39: 45-71, 1991.
  • [25] P. Ponte Castaneda. New variational principles in plasticity and their application to composite materials. J. Mech. Phys. Solids, 40: 1757-1788, 1992.
  • [26] D.R.S. Talbot, J.R. Willis. Some explicit bounds for the overall behaviour of nonlinear composites. Int. J. Solids Struct., 29: 1981-1987, 1992.
  • [27] Suquet, P. Overall potentials and extremal surfaces of power law or ideally plastic composites. J. Mech. Phys. Solids, 41: 981-1002, 1993.
  • [28] T. Olson. Improvements on a Taylor's upper bound for rigid-plastic composites. Mater. Sci. Eng. A, 175: 15-19, 1994.
  • [29] J. D Eshelby. The elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. A, 241: 376-396, 1957.
  • [30] T.I. Zohdi. Homogenization Methods and Multiscale Modeling. In: Encyclopedia of Computational Mechanics. Volume 2: Solids and Structures. John Wiley & Sons, Ltd, Chichester, 2004.
  • [31] J. Aboudi. Mechanics of Composite Materials - A Unified Micromechanical Approach. Elsevier, Amsterdam, 1992.
  • [32] R. Christensen. A critical evaluation for a class of micromechanics models. J. Mech. Phys. Solids, 38(3): 379-404, 1990.
  • [33] Z. Hashin. Analysis of composite materials: a survey. ASME J. Appl. Mech., 50: 481-505, 1983.
  • [34] R. Hill. Continuum micromechanics of elastoplasticpolycrystals. J. Mech. Phys. Solids, 13: 89-101, 1965.
  • [35] J.W. Hutchinson. Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A., 348: 101-127, 1976.
  • [36] M. Berveiller, A. Zaoui. An extension of the the self-consistent scheme to plastically flowing polycristals. J. Mech. Phys. Solids, 26: 325-344, 1979.
  • [37] M. Lefik, D.P. Boso, B. A. Schrefler. Generalized self-consistent homogenization using the Finite Element Method. Z. Angew. Math. Mech., 89(4): 306 - 319, 2009.
  • [38] M. Lefik, D.P. Boso, B.A. Schrefler. Generalised self-consistent like method for Mechanical Degradation of fibrous composites, (submitted).
  • [39] D.P. Boso, M. Lefik, B.A. Schrefler. Generalized shelf consistent like homogenization as an inverse problem, (submitted).
  • [40] J.L. Chaboche. Continuum Damage Mechanics: Part I-General Concepts. Journal of Applied Mechanics, 55: 59-64, 1988.
  • [41] C. Pellegrino, U. Galvanetto, B.A. Schrefler. Numerical homogenisation of periodic composite materials with non-linear material components. Int. J. Num. Meth. Engng., 46: 1609-1637, 1999.
  • [42] D. Boso, C. Pellegrino, U. Galvanetto, B.A. Schrefler. Macroscopic damage in periodic composite materials. Comm. Num. Meth. Engng, 16(9): 615-623, 2000.
  • [43] J.D. Achenbach. Quantitative nondestructive evaluation. Int. J. Solid and Structures, 37(1-2): 13-27, 2000.
  • [44] J.C. Simo, R.L. Taylor. A return mapping algorithm for plane stress elastoplasticity. International Journal for Numerical Methods in Engineering, 22(3): 649-670, 1986.
  • [45] J.C. Simo, T.J.R. Hughes. Computational inelasticity. Springer Verlag, 1998.
  • [46] E. Herve, A. Zaoui. Elastic behaviour of multiply coated fibre-reinforced composites. Int. J. Engng Sci., 33(10): 1419-1433, 1995.
  • [47] O.C. Zienkiewicz, R.L. Taylor. The Finite Element Method for Solid and Structural Mechanics. Elsevier Butterworth-Hein, 2005.
  • [48] L.V. Gibiansky, O. Sigmund. Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids, 48: 461-498, 2000.
  • [49] D.P. Boso, M. Lefik, B.A. Schrefler. Thermal and Bending Strain on NbaSn Strands. IEEE Transactions on Applied Superconductinity, 16(2): 1823-1827, 2006.
  • [50] R. Zanino, D. P. Boso, M. Lefik, P.L. Ribani, L. Savoldi Richard, B.A. Schrefler. Analysis of Bending Effects on Performance Degradation of ITER-Relevant Nb3Sn Strand Using the THELMA Code. IEEE Transactions on Applied Superconductivity, 18(2): 1067-1071, 2008.
  • [51] D.P. Boso, M. J. Lefik, B. A. Schrefler. Thermo-Mechanics of the Hierarchical Structure of ITER Superconducting Cables. IEEE Transactions on Applied Superconductinity, 17(2): 1362-1365, 2007.
  • [52] P. Bauer, H. Rajainmaki, and E. Salpietro. EFDA Material Data Compilation for Superconductor Simulation, (unpublished). EFDA CSU, Garching, April 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB8-0009-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.