PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The method of the fundamental solutions and its modifications for electromagnetic field problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the method of fundamental solutions (MFS) for solving electromagnetic problems. We compare the MFS with the method of boundary integral equations in solution of potential problems. We demonstrate the MFS techniąue together with the Lapiace transform in application to the problem of scattering of electromagnetic pulses. A modification of the MFS - the method of approximate fundamental solutions (MAFS) is also considered in the paper. The method is applied to axisymmetric field problems. Numerical examples justifying the methods are presented.
Rocznik
Strony
21--33
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
autor
  • Department of Mathematics University of Southern Mississippi, Hattiesburg, MS 39406, USA
Bibliografia
  • [1] V.D. Kupradze, M.A. Aleksidze. The method of functional eąuations for the approximate solution of certain boundary value problems. USSR Comput Math Math Phys., 4(4): 82-126, 1964.
  • [2] G. Fairweather and A. Karageorghis. The method of fundamental solutions for elliptic boundary value problems. Advances in Comp. Math., 9: 69-95, 1998.
  • [3] M.A. Golberg and C.S. Chen, The Method of Fundamental Solutions for Potential, Helmholtz and Diffusion Problems. M.A. Golberg, eds., Boundary Integral Methods - Numerical and Mathematical Aspects, pp. 103-176. Computational Mechanics Publications, 1998.
  • [4] A. Doicu, Y. Eremin, T. Wriedt. Acoustic and Electromagnetic Scattering Analysis using Discrete Sources. Academic Press, San Diego, 2000.
  • [5] Y.A. Eremin, A.G. Sveshnikov. A computer technology for the discrete source method in scattering problems. Comput Math Modding, 14(1): 16-25, 2003.
  • [6] A., Doicu, T. Wriedt, Y. Eremin. Light scattering by systems of particles. Null-field method with discrete sources - theory and programs. Springer, Berlin, Heidelberg, New York, 2006.
  • [7] Ch. Hafner, L. Bomholt. The 3D electromagnetic wave simulator, 3D MMP software and user's guide. Wiley, Chichester, 1993.
  • [8] D.I. Kaklamani, H.T. Anastassiu. Aspects of the method of auxiliary sources in computational electromagnetics. IEEE Antennas Propag Mag, 44(3): 48-64, 2002.
  • [9] M. Kawano, H. Ikuno, M. Nishimoto. Numerical analysis of 3-D scattering problems using the Yasuura method. IEICE Trans Electron., 1E79-C: 1358-63, 1996.
  • [10] A.C. Ludwig. The generalized multipole technique. Comput Phys Commun., 68: 306-14, 1991.
  • [11] G. Fairweather, A. Karageorghis, P. A. Martin. The method of fundamental solutions for scattering and radiation problems. Engineering Analysis with Boundary Elements, 27: 759-769, 2003.
  • [12] K. Atkinson,. A survey of boundary integral equation method for the numerical solution of Laplace's equation in three dimension. In: M. Golberg, eds., Numerical Solution of Integral Equations, pp. 1-34. Plenum Press, New York, 1990.
  • [13] A. Taflove. Computational Electrodynamics - The Finite-Difference Time-Domain Method. Artech House, Boston, 1995.
  • [14] S.Y. Reutskiy. Trefftz type method for 2D problems of electromagnetic scattering from inhomogeneous bodies. Computer Assisted Mechanics and Engineering Sciences, 10: 609-618, 2003.
  • [15] S. Chen, M.A. Golberg, Y.F. Rashed. A mesh free method for linear diffusion equations. Numerical Heat Transfer, Part B, 33. 469-486, 1998.
  • [16] R. Piessens, R. Huismans. Algorithm 619: automatic numerical inversion of the Laplace transform. ACM Trans. Math. Softw., 10: 348-356, 1984.
  • [17]S. Garbow, G. Guinta, J.N. Lyness. Algorithm 662: A FORTRAN software package for the numerical inversion of the Łapiące transform basedon Weeks' method. ACM Trans. Math. Softw., 14: 163-175, 1988.
  • [18] De Moerloose J., De Zutter D. Surface integral representation radiation boundary condition for the FDTD method. IEEE Trans. Antennas and Propagation, 41: 890-898, 1993.
  • [19] S.Y. Reutskiy. A boundary method of Trefftz type with approximate trial functions. Engineering Analysis with Boundary Elements, 26: 341-353, 2002.
  • [20] S.Y. Reutskiy. A boundary method of Trefftz type for PDEs with scattered data. Engineering Analysis with Boundary Elements, 29: 713-724, 2005.
  • [21] S.Y. Reutskiy. The method of approximate fundamental solutions for axisymmetric problems with Łapiące operator. Engineering Analysis with Boundary Elements, 31: 410-415, 2007.
  • [22] S. Chen, M.A. Golberg, R.S. Schaback. Recent developments of the dual reciprocity method using compactly supported radial basis functions. In: Y.F. Rashed, ed., Transformation of Domain Effects to the Boundary. WIT Press, Boston, 2002.
  • [23] D. Collins. On the solution of some axisymmetric boundary value problems by means of integral equations. The electrostatic potential due to a spherical gap between two infinite conducting planes. Proc. Edin. Math. Soc., 12: 95-106, 1960.
  • [24] Reutskiy, B. Tirozzi. A new boundary method for electromagnetic scattering from inhomogeneous bodies, Joumal of Quantative Spectroscopy & Radiative Transfer, 72: 837-852, 2002.
  • [25] S.Y. Reutskiy and B. Tirozzi. A new boundary method for electromagnetic scattering from inhomogeneous bodies: H-polarized waves. Journal of Quantative Spectroscopy & Radiative Transfer, 83: 313-320, 2004.
  • [26] Y. Tian, S. Reutskiy, C. S. Chen. A basis function for apj5roximation and the solutions of partial differential equations. Numerical Methods for Partial Differential Equations, 24: 1018-1036, 2008.
  • [27] Yu. Reutskiy, C. S. Chen, H. Y. Tian. A boundary meshless method using Chebyshev interpolation and trigonometric basis function for solving heat conduction problems, International Journal for Numerical Methods in Engineering, 74: 1519-1644, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB8-0009-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.