PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Essential boundary conditions in meshfree methods via a modified variational principle: Applications to shell computations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has been recognized by many authors that the enforcement of the essential boundary conditions is not an easy task, when it comes to moving least square (MLS)-based meshfree methods. In particular, the modelling of non-linear problems requires high approximation accuracy in order to obtain a solution. This paper addresses the boundary approximation accuracy of MLS-based meshfree methods and shows more specifically its significance with respect to the imposition of essential boundary conditions by the penalty, the Lagrange multiplier method and their combination which results in a modified variational principle. The later is augmented by a stabilization term which uses individual stabilization parameters determined for each numerical integration point by an iteration procedure. This methodology is demonstrated on shell deformations in non-linear structural mechanics involving the Green strain tensor and two different hyper-elastic material laws.
Rocznik
Strony
123--142
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
autor
  • School of Civil Engineering, The University of Nottingam, University Park Nottingam NG7 2RD, UK
Bibliografia
  • [1] L. Anand. A constitutive model for compressible elastomeric solids. Computational Mechanics, 18: 339-355, 1996.
  • [2] E.M. Arruda, M. C. Boyce. A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41: 389-412, 1993.
  • [3] T. Belytschko, L. Gu, Y. Y. Lu. Practure and crack growth by element-free Galerkin methods. Modelling and Simulation in Materials Science and Engineering, 2: 519-534, 1994.
  • [4] T. Belytschko, Y. Y. Lu, L. Gu. Element free Galerkin methods. International Journal for Numerical Methods in Engineering, 37: 229-256, 1994.
  • [5] P. Breitkopf, A. Rassineux, P. Yillon. An introduction to moving least sąuares meshfree methods. Revue Europeenne des Elements Finis, 11 (7-8): 825-868, 2002.
  • [6] J.-S. Chen, C. Pan, C.-T. Wu. A large deformation analysis of rubber based on a reproducing kernel particle method. Computational Mechanics, 19: 211-227, 1997.
  • [7] J.Y. Cho, Y.M. Song, Y.H. Choi. Boundary locking induced by penalty enforcement of essential boundary i conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering, 197: 1167-1183, 2008.
  • [8] S. De and K.-J. Bathe. The method of finite spheres. Computational Mechanics, 25: 329-345, 2000.
  • [9] J. Dolbow, T. Belytschko. Numerical integration of Galerkin weak form in meshfree methods. Computational Mechanics, 23(3): 219-230, 1999.
  • [10] C A. Duarte, J.T. Oden. Hp clouds- a hp meshless method, Numerical Methods Partial Differential Equations, 12: u73-705, 1996.
  • [11] L Griebel, M. A. Schweitzer. A particle-partition of unity method - Part V: Boundary conditions. In: S. Hildebrandt, H. Karcher, eds., Geometrie Analysis and Nonlinear Partial Differential Equations, pp. 517-540. Springer, 2002.
  • [12] R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and Applications, 4: 303-320, 1969.
  • [13]P. Lancaster, K. Salkauskas. Surface generated by moving least square methods. Mathematics of Computations, 37(155): 141-158, 1981.
  • [14] W.K. Liu, Y. Chen. Wavelet and multiple scale reproducing kernel methods. Journal of Numerical Methods in Fluids, 21: 901-931, 1995.
  • [15] J.R. Liu, X.L. Chen. A mesh-free method for static and free vibration analysis of thin plates of complicated e. Journal of Sound and Vibration, 241(5): 839-855, 2001.
  • [16] Y.Y. Lu, T. Belytschko, L. Gu. A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics And Engineering, 113: 397-414, 1994.
  • [17] J.M. Melenk, I. Babuska. The partition of unity method: Basic theory and applications. International Journal for Numerical Methods in Engineering, 40: 727-758, 1997.
  • [18] B. Nayroles, G. Touzot, P. Yillon. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics, 10: 307-318, 1992.
  • [19] J. Nitsche. Uber ein Yariationsprinzip żur Losung von Dirichlet-Problemen bei Yerwendung von Teilraumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg, 36: 9-15, 1970-1971.
  • [20] R.W. Ogden. Non-linear Elastic Deformation, Ellis Horwood, Chichester, 1984.
  • [21] J.D. Powell. A method for non-linear constraint in optimization problems. In: R. Fletcher, ed., Optimization, Academic Press, London, 283-298, 1969.
  • [22] C. Sansour, S. Feih, W. Wagner. On the performance of enhanced strain finite elements in large strain deformations of elastic shells. International Journal for Computer-Aided Engineering and Software, 20(7): 875-895, 2003.
  • [23] G. Ventura. An augmented Lagrangian approach to essential boundary conditions in meshless methods. International Journal For Numerical Methods In Engineering, 53: 825-842, 2002.
  • [24] G. J. Wagner, W.K. Liu. Application of essential boundary conditions in mesh-free methods: a corrected collocation method. International Journal for Numerical Methods in Engineering, 47(2): 1367-1379, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB8-0009-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.