PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza niezawodności i optymalizacja odpornościowa złożonych konstrukcji i procesów technologicznych

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Za główny cel pracy należy uznać opracowanie sformułowań teoretycznych oraz algorytmów numerycznych, które umożliwiają analizę stochastyczną złożonych konstrukcji i procesów technologicznych. Przez analizę stochastyczną rozumieć będziemy tu szereg zagadnień, a w szczególności: o analizę losowego charakteru odpowiedzi układów konstrukcyjnych, wy- znaczenie parametrów rozkładu prawdopodobieństwa odpowiedzi, o analizę niezawodności, tj. oszacowanie prawdopodobieństwa awarii konstrukcji, bądź procesu technologicznego, o optymalizację odpornościową, gdzie oprócz wartości średnich wybranych kryteriów minimalizuje się wariancje tych kryteriów. Podkreślenie, iż opisana analiza stochastyczna dotyczyć ma złożonych konstrukcji i procesów służy w istocie zaakcentowaniu konieczności opracowania wyspecjalizowanych, nieklasycznych metod rozwiązania. Jako przykłady zaawansowanych zagadnień mechaniki, które uznać można za reprezentatywne dla złożoności obliczeniowej współcześnie przeprowadzanych analiz numerycznych, wybrano zagadnienia wytrzymałości zderzeniowej elementów konstrukcji pojazdów oraz proces głębokiego tłoczenia blachy. Jakościowy charakter odpowiedzi tego typu konstrukcji modelowany również będzie za pomocą szeregu specjalnie dobranych przykładów analitycznych, jak również mniejszych, testowych zadań mechaniki konstrukcji. Pomimo nieustannego postępu techniki komputerowej, sam wzrost mocy obliczeniowej nie jest wystarczającym środkiem do zapewnienia "ekspansji" analizy stochastycznej na nowe, niedostępne dotychczas obszary zastosowań. W dalszym ciągu, szczególnie gdy problemy mechaniki reprezentowane są przy pomocy złożonych modeli MES, użycie klasycznych metod symulacji Monte Carlo wiąże się z ogromnym nakładem obliczeniowym. W większości przypadków dodatkowy koszt generowany przez analizę stochastyczną jest niewspółmiernie wysoki, co podważa zasadność przeprowadzania tego typu pogłębionej analizy. Z drugiej strony, np. w analizie niezawodności złożonych konstrukcji i procesów technologicznych, najczęściej nie jest możliwe bezpośrednie zastosowanie bardziej efektywnych metod oszacowania wartości prawdopodobieństwa awarii, takich które wykorzystują koncepcję punktu projektowego. Użycie gradientowych algorytmów lokalizacji punktu projektowego w analizie niezawodności elementów absorbujących energię zderzeń, skazane jest z góry na niepowodzenie. Funkcje graniczne, z którymi ma się tam do czynienia, zazwyczaj nie są różniczkowalne, a obserwowany numeryczny szum skutecznie utrudnia zastosowanie jakichkolwiek metod niesymulacyjnych. Nieróżniczkowalne, a jednocześnie kosztowne obliczeniowo, są także funkcje celu i funkcje ograniczeń zadania optymalizacji odpornościowej. Wszystko to sprawia, że niezbędnym składnikiem efektywnej analizy stochastycznej złożonych konstrukcji są wyspecjalizowane algorytmy, które nie są wrażliwe na silnie nieliniowy charakter odpowiedzi konstrukcji, a jednocześnie są w stanie wykorzystać możliwości przetwarzania równoległego oferowane przez współczesne komputery. W niniejszej pracy szczególny nacisk położony zostanie na następujące elementy budowanych algorytmów: o Efektywne symulacyjne metody analizy losowego rozrzutu odpowiedzi konstrukcji. Zastosowane będą metody typu "descriptive sampling", wykorzystujące koncepcję łacińskiej hiperkostki oraz optymalnej łacińskiej hiperkostki. Metody te łączą dobrą efektywność estymacji momentów statystycznych funkcji losowych z małą wrażliwością na charakter zmienności tych funkcji oraz na typy rozkładów prawdopodobieństwa zmiennych losowych. Użyte zostaną efektywne algorytmy tworzenia optymalnych hiperkostek (ang. optimal Latin hypercube - OLH). o Nowoczesne techniki aproksymacji nieliniowych funkcji wielu zmiennych (metody powierzchni odpowiedzi). Wykorzystywane będą przede wszystkim: metoda ważonej liniowej regresji oraz metoda krigingu. To właśnie metoda krigingu, obok efektywnych technik symulacji losowych, stanowić będzie kluczowy element algorytmu rozwiązania zadania optymalizacji odpornościowej. Jako dominujący plan eksperymentów używany będzie plan punktów generowanych przez optymalne łacińskie hiperkostki. o Wykorzystanie rozwiązań niewrażliwych na szum numeryczny, charakterystyczny dla jawnego schematu całkowania równań ruchu oraz algorytmów kontaktu stosowanych w modelach MES. Jest to niezbędny warunek zapewnienia zbieżności zarówno algorytmów analizy niezawodności jak też optymalizacji odpornościowej. Ponadto, dodatkowym celem autora było bliższe przedstawienie koncepcji optymalizacji odpornościowej. Ten typ optymalizacji jest jeszcze ciągle mało znany, szczególnie w polskiej literaturze, i czasami mylony z optymalizacją nie- zawodnościową. Nawet zaproponowana przez autora nazwa "optymalizacja odpornościowa" nie jest jeszcze powszechnie przyjętym tłumaczeniem angielskiego terminu robust optimization. Mając to na uwadze, w niniejszej pracy podjęto próbę usystematyzowania wiedzy na temat alternatywnych sformułowań zadania niedeterministycznej optymalizacji konstrukcji. Przedstawione będą sformułowania oraz zaproponowane zostaną strategie rozwiązania zadania optymalizacji odpornościowej. Wszystkie rozwijane w pracy metody zaimplementowano w obiektowo zorientowanym programie STAND, który współtworzony jest przez autora w ramach badań prowadzonych w Pracowni Niezawodności i Optymalizacji IPPT PAN. Efektywne tworzenie dużego programu do analizy stochastycznej konstrukcji, przeznaczonego zarówno do analizy niezawodności jak i optymalizacji odpornościowej, a także zadanie jego integracji z zewnętrznymi pakietami obliczeniowy- mi MES, stanowią ciekawe i nietrywialne problemy informatyczne. Zagadnienia te, o niebagatelnym znaczeniu w praktyce, zostaną w pracy szczegółowo omówione. Zaproponowanych będzie szereg rozwiązań programistycznych dotyczących architektury kodu programu STAND.
Rocznik
Tom
Strony
3--337
Opis fizyczny
Bibliogr. 279 poz., il.
Twórcy
autor
Bibliografia
  • 1. T. Abdo, R. Rackwitz. A new beta-point algorithm for large time-invariant and time-variant reliability problems. w: A. Der Kiureghian, P. Thoft-Christensen (eds.), Reliability and Optimization of Structural Systems ’90, Proc. 3rd WG 7.5 IFIP Conf., Berkeley, 26–28 March 1990, 1–12, Berlin, 1991.
  • 2. H. Agarwal. Reliability based design optimization: formulations and methodologies. Praca Dokt., University of Notre Dame, 2004.
  • 3. C.A. Alonso, S.A. Collado. Principal component analysis in data reduction – An application to structural mechanics. w: I. Doltsinis (ed.), Stochastic Analysis of Multivariate Systems in Computational Mechanics and Engineering. CIMNE, Barcelona, Spain, 1999.
  • 4. Y. Aoues, A. Chateauneuf. Benchmark study of numerical methods for reliability- based design optimization. Structural and Multidisciplinary Optimization, 41:277–294, 2010.
  • 5. L. Armijo. Minimization of functions having Lipschitz – continuous first partial derivatives. Pacific J. Math. 16:1–3, 1966.
  • 6. J.S. Arora. Introduction to Optimum Design. McGraw-Hill, 1989.
  • 7. P. Audze, V. Eglais. New approach to planning out of experiments. w: Problems of dynamics and strength, volume 35, 104–107, 1977. (in Russian).
  • 8. J.F.M. Barthelemy, R. Haftka. Approximations concepts for optimal structural design - a review. Structural Optimization, 5:129–144, 1993.
  • 9. A. Basudhar, S. Missoum. Adaptive explicit decision functions for probabilistic design and optimization using support vector machines. Computers and Structures, 86:1904–1917, 2008.
  • 10. A. Basudhar, S. Missoum, A. Harrison Sanchez. Limit state function identification using Support Vector Machines for discontinuous responses and disjoint failure domains. Probabilistic Engineering Mechanics, 23:1–11, 2008.
  • 11. S.J. Bates, J. Sienz, D.S. Langley. Formulation of the Audze-Eglais uniform Latin hypercube design of experiments. Advances of Engineering Software, 34:493–506, 2003.
  • 12. Y. Ben-Haim, I. Elishakoff. Convex Models of Uncertainty in Applied Mechanics. Elesevier, Amsterdam, 1990.
  • 13. H.-G. Beyer, B. Sendhoff. Robust optimization - A comprehensive survey. Computer Methods in Applied Mechanics and Engineering, 196:3190–3218, 2007.
  • 14. A. Biegus. Probabilistyczna analiza konstrukcji stalowych. Wydawnictwo Naukowe PWN, 1999.
  • 15. G. Blatman, B. Sudret. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics, 25:183–197, 2010.
  • 16. R. Bouix, P. Viot, J.-L. Lataillade. Polypropylene foam behaviour under dynamic loadings: Strain rate, density and microstructure effects. International Journal of Impact Engineering, 36:329–342, 2009.
  • 17. V. Braibant, M. Bulik, M. Liefvendahl, S. Molinier, R. Stocki, C. Wauquiez. Stochastic simulation of highly nonlinear dynamic systems using the M-XPLORE extension of the RADIOSS software. w:Workshop on Optimal Design of Materials and Structures. Ecole Polytechnique, 2002. On CD.
  • 18. C.E. Brenner, C. Bucher. A contribution to the SFE-based reliability assessment of nonlinear structures under dynamic loading. Probabilistic Engineering Mechanics, 10(4):265–273, 1995.
  • 19. C.G. Bucher. Adaptive sampling – an iterative fast Monte Carlo procedure. Structural Safety, 5:119–126, 1988.
  • 20. C.G. Bucher, U. Bourgund. A fast and efficient response surface approach for structural reliability problems. Structural Safety, 7:57–66, 1990.
  • 21. M. Bulik, M. Liefvendahl, R. Stocki, C. Wauquiez. Stochastic simulation for crashworthiness. Advances in Engineering Software, 35:791–803, 2004.
  • 22. C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.
  • 23. F. Campos, P. Geremia, S. Weston, M. Islam. Fast robust design optimisation of a vehicle cooling duct using CFD. w: Proc. of NAFEMS World Congress, Vancouver, 22nd May, 2007.
  • 24. N. Cappetti, A. Donnarumma, A. Naddeo, L. Russo. Design of experiment about foam CF45 for pedestrian safety in car design. Journal of Materials Processing Technology, 175:77–82, 2006.
  • 25. J.M.A. Cesar de Sa, A.D. Santos (eds.). Materials Processing and Design: Modeling, Simulation and Applications NUMIFORM 2007 Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes, volume 908 of AIP Conference Proceedings, Materials Physics and Applications. Springer, 2007.
  • 26. P.B. Chang, B.J. Williams, T.J. Santner, W.I. Notz, Bartel D.L. Robust optimization of total joint replacements incorporating environmental variables. Journal of Biomechanical Engineering, 121:304–310, 1999.
  • 27. S.H. Chen, J. Wu, Y.D. Chen. Interval optimization for uncertain structures. Finite Elements in Analysis and Design, 40:1379––1398, 2004.
  • 28. W. Chen, J.K. Allen, K.L. Tsui, F. Mistree. A procedure for robust design: minimizing variations caused by noise factors and control factors. ASME Journal of Mechanical Design, 118:478–485, 1996.
  • 29. W. Chen, W. Fu, S.B. Biggers, R.A. Latour. An affordable approach for robust design of thick laminated composite structure. Optimization and Engineering, 1:305–322, 2000.
  • 30. W. Chen, A. Sahai, A. Messac, G.J. Sundararaj. Exploration of the effectiveness of physical programming in robust design. ASME Journal of Mechanical Design, 122:155–163, 2000.
  • 31. J.-L. Chenot, F. Bay. An overview of numerical modelling techniques. Journal of Materials Processing Technology, 80-81:8–15, 1998.
  • 32. J.H. Choi, W.H. Lee, J.J. Park, B.D. Youn. A study on robust design optimization of layered plate bonding process considering uncertainties. Structural and Multidisciplinary Optimization, 35:531–540, 2008.
  • 33. K.K. Choi, B.D. Youn. Hybrid analysis method for reliability-based design optimization. w: Proc. of ASME Design Engineering Technical Conference, Pittsburgh, Pennsylvania, September 2001.
  • 34. K.K. Choi, B.D. Youn, R.-J. Yang. Moving least square method for reliability- based design optimization. w: Proc. of the 4th World Congress on Structural and Multidisciplinary Optimization, Dalian, 2001.
  • 35. Y. Collette, P. Siarry. Multi-objective Optimization: Principles and Case Studies. Springer, 2003.
  • 36. N. Cressie. The origins of kriging. Mathematical Geology, 22:239–252, 1990.
  • 37. M.A. Crisfield. Non-linear Finite Element Analysis of Solids and Structures, Volume 1: Essentials. Wiley, 1991.
  • 38. F. Delcroix, T. Bekkour, R. Stocki. Report on robust optimization and ADVISER extensions. Report no. D734A, EC FP6 Project APROSYS, 2008.
  • 39. J. Deng, D. Gu, X Li, Z.Q. Yue. Structural reliability analysis for implicit performance functions using artificial neural network. Structural Safety, 27:25–48, 2005.
  • 40. A. Der Kiureghian. Safety Engineering in Structural Design. Lecture notes for seminar on safety engineering, Press Center Hall, Tokyo, Japan, July 11-12, 1989.
  • 41. A. Der Kiureghian, T. Haukaas, K. Fujimura. Structural reliability software at the University of California, Berkeley. Structural Safety, 28:44–67, 2006.
  • 42. A. Der Kiureghian, J.-B. Ke. Finite-element based reliability analysis of frame structures. w: Proc. 4th International Conference on Structural Safety and Reliability, Kobe, Japan, Part I, 395–404, 1985.
  • 43. A. Der Kiureghian, J.-B. Ke. The stochastic finite element method in structural reliability. Journal of Engineering Mechanics, ASCE, 112:85–104, 1986.
  • 44. A. Der Kiureghian, J.-B. Ke. The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics, 3(2):83–91, 1988.
  • 45. A. Der Kiureghian, P.-L. Liu. Structural reliability under incomplete probability information. Journal of Engineering Mechanics, ASCE, 112:85–104, 1986.
  • 46. M. Diez, F. Delcroix, R. Puppini, H. Cappon, R. Meijer, M. Avalle. Sources of dispersion and ADVISER templates for stochastic analysis. Report no. D721, EC FP6 Project APROSYS, 2006.
  • 47. M. Diez, R. Pupini, F. Delcroix, R. Stocki, I. Ciglaric. Complete demonstrators in various numerical codes along with procedural report for virtual testing implementation in pedestrian impacts. Report no. D742B, EC FP6 Project APROSYS, 2009.
  • 48. O. Ditlevsen, H.O. Madsen. Structural Reliability Methods. Wiley, 1996.
  • 49. Frangopol D.M., Y.-H. Lee, K. Willam. Nonlinear finite element reliability analysis of concrete. Journal of Engineering Mechanics, 122:1174–1182, 1996.
  • 50. K. Doliński. First-order second-moment approximation in reliability of structural systems: critical review and alternative approach. Structural Safety, 1:211–231, 1983.
  • 51. K. Dolńnski. Importance sampling techniques in reliability calculations. Prace IPPT, 37, 1988.
  • 52. K. Doliński, R. Stocki. Reliability-based structural optimization accounting for manufacturing and material quality. Engineering Transactions, 4:623–636, 2001.
  • 53. I. Doltsinis. Stochastic Analysis of Multivariate Systems in Computational Mechanics and Engineering. CIMNE, Barcelona, Spain, 1999.
  • 54. I. Doltsinis. Design optimization and robustness of structures against uncertainties based on Taylor series expansion. w: Y. Tsompanakis, N.D. Lagaros, M. Papadrakakis (eds.), Structural Design Optimization Considering Uncertainties, Structures and Infrastructures Series. Taylor and Francis, 2007.
  • 55. I. Doltsinis, Z. Kang. Robust design of structures using optimization methods. Computer Methods in Applied Mechanics and Engineering, 193:2221–2237, 2004.
  • 56. I. Doltsinis, Z. Kang. Robust design of non-linear structures using optimization methods. Computer Methods in Applied Mechanics and Engineering, 194:1179–1795, 2005.
  • 57. S. Donders, M. Brughmans, L. Hermans, C. Liefooghe, W. Van der Auweraer, H. Desmet. The robustness of dynamic vehicle performance to spot weld failures. Finite Elements in Analysis and Design, 42:670–682, 2006.
  • 58. N. Draper, H. Smith. Applied Regression Analysis. Wiley, New York, 1998.
  • 59. X. Du, W. Chen. Sequential optimization and reliability assessment method for efficient probabilistic design. w: Proc. of ASME 2002 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada, September 29–October 2, 2002.
  • 60. X. Du, A. Sudjianto, W. Chen. An integrated framework for optimization using inverse reliability strategy. Journal of ASME Journal of Mechanical Design, 126(4):562–570, 2004.
  • 61. E.N. Dvorkin, K.J. Bathe. A continuum mechanics based four-node shell element for general nonlinear analysis. Engineering Computations, 1:77–88, 1984.
  • 62. K. El-Tawil, M. Lemaire, J.-P. Muzeau. Reliability method to solve mechanical problems with implicit limit states. w: R. Rackwitz, P. Thoft-Christensen (eds.), Reliability and Optimization of Structural Systems ’91, Proc. 4th IFIP WG 7.5 Conf., Munich, 11–13 September 1991, 181–190. Springer-Verlag, 1992.
  • 63. J. Ellway, W. Donaldson, M. Edwars, T. Versmissen, M. Bosch-Rekveldt. Development and evaluation of the advanced European mobile deformable barrier (AE-MDB) Test procedure. Report no. D1.1.1B, EC FP6 Project APROSYS, 2006.
  • 64. I. Enevoldsen. Reliability-based optimization as an information tool. Mechanics of Structures and Machines, 22:117–135, 1994.
  • 65. I. Enevoldsen, J.D. Sorensen. Strategies for optimal design of structural systems. w: R. Rackwitz, P. Thoft-Christensen (eds.), Reliability and Optimization of Structural Systems ’91, Proc. 4th IFIP WG 7.5 Conf., Munich, 11–13 September 1991, 191–206. Springer-Verlag, 1992.
  • 66. I. Enevoldsen, J.D. Sorensen. Reliability-based optimization of series systems of parallel systems. Journal of Structural Engineering, ASCE, 119:1069–1084, 1993.
  • 67. I. Enevoldsen, J.D. Sorensen. Decomposition techniques and effective algorithms in reliability-based optimization. w: P.D. Spanos (ed.), Computational Stochastic Mechanics, 149–156. Balkema, 1995.
  • 68. L. Faravelli. Response surface approach for reliability analysis. Journal of Engineering Mechanics, ASCE, 115:2763–2781, 1989.
  • 69. P. Foryś. Nowy algorytm optymalizacji rojem cząstek i jego zastosowanie w kształtowaniu elementow konstrukcji. Praca Dokt., Politechnika Krakowska, Instytut Mechaniki Stosowanej, www.optalg.com, 2007.
  • 70. S.E. Gano, J.E. Renaud, J.D. Martin, T.W. Simpson. Update strategies for kriging models used in variable fidelity optimization. Structural and Multidisciplinary Optimization, 32:287–298, 2006.
  • 71. M. Gasser, G.I. Schueller. Reliability-based optimization of structural systems. Mathematical Methods of Operations Research, 46:287–307, 1997.
  • 72. M. Gasser, G.I. Schueller. Some basic principles of reliability-based optimization (RBO) of structures and mechanical components. w: K. Marti, P. Kall (eds.), Stochastic Programming Methods and Technical Applications, Lecture Notes in Economics and Mathematical Systems 458, 80–103. Springer Verlag, 1998.
  • 73. R.G. Ghanem, P.D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer Verlag, 1991.
  • 74. R. Gijs. Subset selection from large datasets for Kriging modeling. Structural and Multidisciplinary Optimization, 38:545–569, 2009.
  • 75. P.E. Gill, W. Murray, M.H. Wright. Practical Optimization. Academic Press, 1981.
  • 76. A.S. Giunta, L.T. Watson. A comparison of approximation modeling techniques: polynomial versus interpolating models. w: Proc. of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 392–404, St. Louis, MO, 1998.
  • 77. W. L. Goffe, G. D. Ferrier, J. Rogers. Global optimization of statistical functions with simulated annealing. Journal of Econometrics, 60(1–2):65–100, 1994.
  • 78. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989.
  • 79. S. Gollwitzer, B. Kirchgasner, R. Fischer, R. Rackwitz. PERMAS-RA/STRUREL system of programs for probabilistic reliability analysis. Structural Safety, 28:108–129, 2006.
  • 80. H.S. Gopalakrishna, E. Donaldson. Practical reliability analysis using a general purpose finite element program. Finite Elements in Analysis and Design, 10:75–87, 1991.
  • 81. W.H. Green. Econometric Analysis. Prentice-Hall, 1997.
  • 82. L. Gu, R.J. Yang. Recent applications on reliability-based optimization of automotive structures. w: Reliability & Robust Design in Automotive Engineering, 77–88. SAE, 2003.
  • 83. M.A Gutierrez, J. Carmeliet, R. De Borst. Finite element reliability methods using DIANA. w: G.M.A. Kusters, M.A.N. Hendriks (eds.), Proc. of the First International DIANA Conference on Computational Mechanics, Delft, The Netherlands, 24–25 October 1994, 255–263. Kluwer Academic Publishers, 1994.
  • 84. R.T. Haftka, Z. Gurdal. Elements of Structural Optimization. Kluwer, 1992.
  • 85. E. Hansen, G.W. Walster. Global Optimization Using Interval Analysis. Dekker, New York, NY, 2003.
  • 86. A.M. Hasofer, N.C. Lind. Exact and invariant second moment code format. Jo-urnal of the Engineering Mechanics Division, ASCE, 100:111–121, 1974.
  • 87. T. Haukaas. Finite Element Reliability and Sensitivity Methods for Performance- Based Engineering. Praca Dokt., University of California, Berkeley, 2003.
  • 88. S.S. Hecker. A simple FLD technique and results on aluminium alloys. w: 7th Congress of IDDRG, Amsterdam, 1972.
  • 89. J.C. Helton, F.J. Davis. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering and System Safety, 81:23–69, 2003.
  • 90. R. Hill. A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193:281–297, 1948.
  • 91. R. Hill. Theoretical plasticity of textured aggregates. Mathematical Proceedings of the Cambridge Philosophical Society, 85:179–191, 1979.
  • 92. R. Hill. Constitutive modelling of orthotropic plasticity in sheet metals. Journal of the Mechanics and Physics of Solids, 38:405–417, 1990.
  • 93. M. Hohenbichler, R. Rackwitz. Non-normal dependent vectors in structural safety. Journal of the Engineering Mechanics Division, ASCE, 107:1227–1238, 1981.
  • 94. M. Hohenbichler, R. Rackwitz. Improvement of second-order reliability estimates by importance sampling. Journal of the Engineering Mechanics, ASCE, 114:2195–2199, 1988.
  • 95. Pavel Hora (ed.). Numisheet 2008, 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Interlaken, Switzerland, September 1–5, 2008.
  • 96. N. Hoshino, A. Takemura. On reduction of finite-sample variance by extended Latin hypercube sampling. Bernoulli, 6:1035–1050, 2000.
  • 97. B. Hu, X. Du. Analytical robustness. Structural and Multidisciplinary Optimization, 34:123–137, 2007.
  • 98. H.-C. Huang. Static and Dynamic Analyses of Plates and Shells: Theory, Software and Applications. Springer-Verlag, 1989.
  • 99. C.G. Huijskens et al. Common road map VT in regulations & Feasibility report of VT in a selected regulated or consumer testing procedure. Report no. D7.4.1 & D7.4.3, EC FP6 Project APROSYS, 2008.
  • 100. D.E. Huntington, C.S. Lyrintzis. Improvements to and limitations of Latin hypercube sampling. Probabilistic Engineering Mechanics, 13:245–253, 1998.
  • 101. J.E. Hurtado. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory. Structural Safety, 26:271–293, 2004.
  • 102. J.E. Hurtado. Structural robustness and its relationship to reliability. w: Y. Tsompanakis, N.D. Lagaros, M. Papadrakakis (eds.), Structural Design Optimization Considering Uncertainties, Structures and Infrastructures Series. Taylor and Francis, 2007.
  • 103. J.E. Hurtado, D.A. Alvarez. Neural-network-based reliability analysis: a comparative study. Computer Methods in Applied Mechanics and Engineering, 191:113–132, 2001.
  • 104. K.-H. Hwang, K.-W. Lee, G.-J. Park. Robust optimization of an automobile re- arview mirror for vibration reduction. Structural and Multidisciplinary Optimization, 21:300-308, 2001.
  • 105. R.L. Iman, W.J. Conover. A distribution-free approach to inducing rank correlation among input variables. Communications in Statistics, 11:311–334, 1982.
  • 106. T. Jansson, L. Nilsson, R. Moshfegh. Reliability analysis of a sheet metal forming process using Monte Carlo analysis and metamodels. Journal of Materials Processing Technology, 202:255–268, 2008.
  • 107. S. Jendo, J. Putresza. Multicriteria optimization of elasto-plastic bar structures. w: R. Rackwitz, P. Thoft-Christensen (eds.), Reliability and Optimization of Structural Systems ’91, Proc. 4th IFIP WG 7.5 Conf., Munich, 11–13 September 1991, 240–249. Springer-Verlag, 1992.
  • 108. C. Jianjiang, X. Renbin, Z. Yifang. A response surface based hierarchical approach to multidisciplinary robust optimization design. The International Journal of Advanced Manufacturing Technology, 26:301–309, 2005.
  • 109. R. Jin, W. Chen, T. Simpson. Comparative studies of metamodeling techniques under multiple modeling criteria. Structural and Multidisciplinary Optimization, 23:1–13, 2001.
  • 110. R. Jin, X. Du, W. Chen. The use of metamodeling techniques for optimization under uncertainty. Structural and Multidisciplinary Optimization, 25:99–116, 2003.
  • 111. G. Johnson, W. Cook. A constitutive model and data for metals subjected to large stains, high strain rates and high temperatures. w: 7th Symposium on Ballistics, The Hague, 1983.
  • 112. D.R. Jones, M. Schonlau, W.J. Welch. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13:455–492, 1998.
  • 113. F. Jurecka. Robust Design Optimization Based on Metamodeling Techniques. Shaker Verlag, Aachen, 2007.
  • 114. F. Jurecka, M. Ganser, Bletzinger. K.-U. Update scheme for sequential spatial correlation approximations in robust design optimization. Computers and Structures, 85:606–614, 2007.
  • 115. Z. Kang. Robust Design Optimization of Structures under Uncertainty. Praca Dokt., Institut fur Statik und Dynamik der Luft- und Raumfahrkonstruktionen Universitat Stuttgart, 2005.
  • 116. A. Karamchandani, P. Bjerager, C.A. Cornell. Adaptive importance sampling. w: A.H.-S. Ang, M. Shinozuka, G.I. Schueller (eds.), Proceedings 5th International Conference on Structural Safety and Reliability, San Francisco. ASCE, 1989.
  • 117. I. Kaymaz, C.A. McMahon. A response surface method based on weighted regression for structural reliability analysis. Probabilistic Engineering Mechanics, 20:11–17, 2005.
  • 118. E. Kazancioglu, G. Wu, J. Ko, S. Bohac, Z. Filipi, S.J. Hu, D. Assanis, K. Saitou. Robust optimization of an automobile valvetrain using a multiobjective genetic algorithm. w: Proc. of DETC’03 ASME 2003 Design Engineering Technical Conferences, Chicago, Illinois, September 2-6, 2003. DETC2003/DAC-48714.
  • 119. M. Kermat, R. Kielbasa. Modified Latin hypercube sampling Monte Carlo (MLH-SMC) estimation for average quality index. Analog Integrated Circuits and Signal Processing, 19:87–98, 1999.
  • 120. A. Kiełbus. Wielokryterialna ocena jakości wyrobow przemysłu maszynowego. Praca Dokt., Politechnika Krakowska, Wydział Mechaniczny, 2007.
  • 121. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi. Optimization by Simulated Annealing. Science, New Series, 220(4598):671–680, 1983.
  • 122. M. Kleiber, H. Antunez, T.D. Hien, P. Kowalczyk. Parameter Sensitivity in Nonlinear Mechanics; Theory and Finite Element Computations. Wiley, 1997.
  • 123. M. Kleiber, T.D. Hien. The Stochastic Finite Element Method. Wiley, 1992.
  • 124. M. Kleiber, J. Knabel, J. Rojek. Response surface method for probabilistic assessment of metal forming failures. International Journal for Numerical Methods in Engineering, 60:51–67, 2004.
  • 125. M. Kleiber, J. Rojek, R. Stocki. Reliability assessment of sheet metal forming operations. Computer Methods in Applied Mechanics and Engineering, 191:4511– 4532, 2002.
  • 126. M. Kleiber, A. Siemaszko, R. Stocki. Interactive stability-oriented reliability-based design optimization. Computer Methods in Applied Mechanics and Engineering, 168(1–4):243–253, 1999.
  • 127. W. Knabe, J. Przewłocki, G. Rożyński. Spatial averages for linear elements for two-parameter random fields. Probabilistic EngineeringMechanics, 13(3):147–167, 1998.
  • 128. J. Knabel. Analiza niezawodności konstrukcji sprężysto - plastycznych przy użyciu powierzchni odpowiedzi. Praca Dokt., IPPT PAN, 2004.
  • 129. P.N. Koch. Probabilistic design: optimization for six sigma quality. w: Proc. of 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, number AIAA-2002-1471, Denver, Colorado, USA, 22-25 April, 2002.
  • 130. P.N. Koch, J.P. Evans, D. Powell. Interdigitation for effective design space exploration using iSIGHT. Structural and Multidisciplinary Optimization, 23:111–126, 2002.
  • 131. P.N. Koch, S. Kodiyalam. Variable complexity structural reliability analysis for efficient reliability-based design optimization. w: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 40th, St. Louis, MO, April 12-15, 1999, Collection of Technical Papers, volume 1, 1999.
  • 132. P.N. Koch, B. Wujek, O. Golovidov. A multi-stage, parallel implementation of probabilistic design optimization in an MDO framework. w: Proc. of the 8-th AIAA/USAF/NAS/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, USA, 6-8 Sept., 2000.
  • 133. P.N. Koch, R.-J. Yang, L. Gu. Design for six sigma through robust optimization. Structural and Multidisciplinary Optimization, 26:235–248, 2004.
  • 134. N. Kuschel, R. Rackwitz. Two basic problems in reliability-based structural optimization. Mathematical Methods of Operations Research, 46(3):309–333, 1997.
  • 135. N. Kuschel, R. Rackwitz. Optimal design under time-variant reliability constraints. Structural Safety, 22(2):113–128, 2000.
  • 136. K. Lange (ed.). Handbook of Metal Forming. McGraw-Hill, 1985.
  • 137. I. Lee, K.K. Choi, L. Du, D. Gorsich. Dimension reduction method for reliability- based robust design optimization. Computers and Structures, 86:1550–1562, 2008.
  • 138. K.-H. Lee, G.-J. Park. Robust optimization considering tolerances of design variables. Computers and Structures, 79:77–86, 2001.
  • 139. K.-H. Lee, G.-J. Park, W.-S. Joo. A global robust optimization using the kriging based approximation model. w: Proc. of the 6th World Congresses on Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, 30 May - 3 June, 2005.
  • 140. S.H. Lee, W. Chen. A comparative study of uncertainty propagation methods for black-box-type problems. Structural and Multidisciplinary Optimization, 37:239– 253, 2009.
  • 141. S.H. Lee, W. Chen, B.M. Kwak. Robust design with arbitrary distributions using Gauss-type quadrature formula. Structural and Multidisciplinary Optimization, 39:227–243, 2009.
  • 142. S.H. Lee, H.S. Choi, B.M. Kwak. Multilevel design of experiments for statisticalmoment and probability calculation. Structural and Multidisciplinary Optimization, 37:57–70, 2008.
  • 143. M. Lemaire, A. Chateauneuf, J-C. Mitteau. Stuctural Reliability. Wiley, 2009.
  • 144. M. Lemaire, A. Mohamed. Finite element and reliability : A happy marriage? w: A.S. Nowak, M.M. Szerszen (eds.), Proc. 9th IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems, University of Michigan, Ann Arbor, MI, USA Sept. 25-27, 2000, 3–14, 2000.
  • 145. M. Lemaire, O. Mohamed, A. Flores Macias. The use of finite element codes for the reliability of structural systems. w: D.M. Frangopol, R.B. Corotis, R. Rackwitz (eds.), Proc. 7th IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems, Boulder, CO, USA 2-4 April, 1996, 223–230. Perga- mon, 1997.
  • 146. M. Lemaire, M. Pendola. Phimeca-Soft. Structural Safety, 28:130–149, 2006.
  • 147. C.-C. Li, A. Der Kiureghian. Optimal discretization of random fields. Journal of Engineering Mechanics ASCE, 119(6):1136–1154, 1993.
  • 148. H. Li, Z. Lu, Z. Yue. Support vector machine for structural reliability analysis. Applied Mathematics and Mechanics, 27(10):1295–1303, 2006.
  • 149. Y.Q. Li, Z.S. Cui, X.Y. Ruan, D.J. Zhang. CAE-based six sigma robust optimization for deep-drawing sheet metal process. The International Journal of Advanced Manufacturing Technology, 30:631–637.
  • 150. M. Liefvendahl, R. Stocki. A study on algorithms for optimization of Latin hypercubes. Journal of Statistical Planning and Inference, 136(9):3231–3247, 2006.
  • 151. P.-L. Liu, A. Der Kiureghian. Multivariate distribution models with prescribed marginals and covariances. Probabilistic Engineering Mechanics, 1(2):105–112, 1986.
  • 152. P.-L. Liu, A. Der Kiureghian. Optimization algorithms for structural reliability analysis. Report No. UCB/SEMM-86/09, Department of Civil Engineering, University of California, Berkeley, CA, 1986.
  • 153. P.-L. Liu, A. Der Kiureghian. Optimization algorithms for structural reliability. Structural Safety, 9:161–177, 1991.
  • 154. P.-L. Liu, A. Der Kiureghian. Finite element reliability of geometrically nonlinear uncertain structures. Journal of Engineering Mechanics, ASCE, 117:1806–1825, 1992.
  • 155. W.K. Liu, T. Belytschko, A. Mani. Probabilistic finite elements for non linear structural dynamics. Computer Methods in Applied Mechanics and Engineering, 56:61–86, 1986.
  • 156. W.K. Liu, T. Belytschko, A. Mani. Random field finite elements. International Journal for Numerical Methods in Engineering, 26(10):1831–1845, 1986.
  • 157. S.N. Lophaven, H.B. Nielsen, J. Sondergaard. Aspects of Matlab toolbox DACE. Technical Report IMM-REP-2002-13, Technical University of Denmark, 2002.
  • 158. S.N. Lophaven, H.B. Nielsen, J. Sondergaard. DACE a Matlab kriging toolbox. Version 2.0. Technical Report IMM-REP-2002-12, Technical University of Denmark, 2002.
  • 159. H.O. Madsen, P. Friis Hansen. A comparison of some algorithms for reliability based structural optimization and sensitivity analysis. w: R. Rackwitz, P. Thoft-Christensen (eds.), Reliability and Optimization of Structural Systems ’91, Proc. 4th IFIP WG 7.5 Conf., Munich, 11–13 September 1991, 443–451. Springer-Verlag, 1992.
  • 160. H.O. Madsen, S. Krenk, N.C. Lind. Methods of Structural Safety. Prentice-Hall, 1986.
  • 161. S. Mahadevan, A. Haldar. Practical random field discretization in stochastic finite element analysis. Structural Safety, 9(4):283–304, 1991.
  • 162. A. Makinouchi, E. Nakamachi, E. O˜nate, R.H. Wagoner (eds.). Proceedings of the 2nd International Conference NUMISHEET 93: Numerical Simulation of 3-D Sheet Metal Forming Processes – Verification of Simulation with Experiment. Isehara, Japan, 1993.
  • 163. Z. Marciniak, K. Kuczyński. Limit strains in the processes of stretch-forming sheet metal. International Journal of Mechanical Sciences, 9:609–621, 1967.
  • 164. J. Marczyk. Principles of Simulation-Based Computer-Aided Engineering. FIM Publications, Madrid, 1999.
  • 165. J. Marczyk. Stochastic multidisciplinary improvement: beyond optimization. w: Proc. 8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, September, 2000.
  • 166. W. Marks, S. Owczarek [pod red.]. Optymalizacja Wielokryterialna Budynkow Energooszczędnych. Numer 46. Studia z Zakresu Inżynierii, IPPT, KILW PAN, Warszawa, 1999.
  • 167. R.T. Marler, J.S. Arora. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26:369–395, 2004.
  • 168. G. Matheron. Principles of geostatistics. Economic Geology, 58:1246–1266, 1963.
  • 169. S. Mazzoni, F. McKenna, G.L. Fenves. Open System for Earthquake Engineering Simulation User Manual. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, http://opensees.berkeley.edu.
  • 170. M.D. McKay, R.J. Beckman, W.J. Conover. A comparison of three methods for selecting values of input variables from a computer code. Technometrics, 21:239–245, 1979.
  • 171. Mecalog SARL, 2 Rue de la Renaissance 92160 Antony, France. RADIOSS Input Manual, Version 4.2, 2000.
  • 172. R.E. Melchers. Simulation in time-invariant and time-variant reliability problems. w: R. Rackwitz, P. Thoft-Christensen (eds.), Reliability and Optimization of Structural Systems ’91, Proc. 4th IFIP WG 7.5 Conf., Munich, 11–13 September 1991, 39–82. Springer-Verlag, 1992.
  • 173. R.E. Melchers. Structural Reliability Analysis and Predictions, 2nd Ed. Wiley, 1999.
  • 174. S. Missoum, P. Ramu, R.T. Haftka. A convex hull approach for the reliability based design optimization of nonlinear transient dynamic problems. Computer Methods in Applied Mechanics and Engineering, 196:2895–2906, 2007.
  • 175. Z. Mourelatos, J. Liang. An efficient unified approach for reliability and robust-ness in engineering design. w: Proc. NSF Workshop on Reliable Engineering Computing, Savannah, Georgia, 2004.
  • 176. J.M. Murzewski. Niezawodność konstrukcji inżynierskich. Arkady, 1989.
  • 177. J.M. Murzewski. Podstawy projektowania i niezawodności konstrukcji: podręcznik dla studentow wyższych szkoł technicznych . Krakow: Politechnika Krakowska, 1999.
  • 178. J. Mycielski. Materiały do nauki ekonometrii. http://inflacja.net/jmyc/.
  • 179. R.H. Myers, D.C. Montgomery. Response Surface Methodology, Process and Product Optimization Using Designed Experiments, Second Edition. Wiley, 2002.
  • 180. V.N. Nair. Taguchi’s parameter design: a panel discussion. Technometrics, 34:127–161, 1992.
  • 181. E. Nakamachi. Sheet forming process characterization by static-explicit anisotropic elastic-plastic finite element simulation. w: A. Makinouchi, E. Nakamachi, E. Onate, R.H. Wagoner (eds.), Proceedings of the 2nd International Conference NUMISHEET 93: Numerical Simulation of 3-D Sheet Metal Forming Processes– Verification of Simulation with Experiment, Isehara, Japan, 1993.
  • 182. K. Nakazima, T. Kikuma, K. Hasuka. Study on the formability of steel sheets. Yawata Technical Report, 264:141–154, 1968.
  • 183. A. Nataf. Determination des distribution dont les marges sont donnees. Comptes Rendus de l’Academie des Sciences, 225:42–43, 1962.
  • 184. J.A. Nedler, R. Mead. Simplex method for function minimization. Computer Journal, 7:308–313, 1965.
  • 185. E. Nikolaidis, R. Burdisso. Reliability based optimization: a safety index approach. Computers and Structures, 28(6):781–788, 1988.
  • 186. A. Olsson, G. Sandberg, O. Dahlblom. On Latin hypercube sampling for structural reliability analysis. Structural Safety, 25:47–68, 2003.
  • 187. A. Osyczka. Multicriterion Optimization in Engineering. Ellis Horwood, 1984.
  • 188. A. Osyczka. Evolutionary Algorithms for Single and Multicriteria Design Optimization. Phisica-Verlag Heidelberg, 2003.
  • 189. E. O˜nate, P. Cendoya, J. Rojek, J. Miquel. A simple thin shell triangle with translational degrees of freedom only. w: S.N. Atluri, G. Yagawa (eds.), Advances in Computational Engineering Science, 308–313. Tech Science Press, USA, 1997.
  • 190. E. O˜nate, J. Rojek, C. Garcia Garino. NUMISTAMP: a research project for assessment of finite element models for stamping processes. Journal of Materials Processing Technology, 50(1-4):17–38, 1995.
  • 191. M. Papadrakakis, N.D. Lagaros, V. Plevris. Design optimization of steel structures considering uncertainties. Engineering Structures, 27:1408–1418, 2005.
  • 192. G.-J. Park. Analytic Methods for Design Practise. Springer-Verlag London Limited, 2007.
  • 193. J.-S. Park. Optimal Latin-hypercube designs for computer experiments. Journal of Statistical Planning and Inference, 39:95–111, 1994.
  • 194. M.F. Pellissetti, G.I. Schueller. On general purpose software in structural reliability – An overview. Structural Safety, 28:3–16, 2006.
  • 195. A. Plucińska, E. Pluciński. Probabilistyka. Rachunek prawdopodobieństwa, statystyka matematyczna, procesy stochastyczne. Wydawnictwa Naukowo-Techniczne, 2000.
  • 196. C. Poloni, A. Clarich. Mode frontier framework and its uncertainty capabilities in aeronautics. w: Proc. of 8th World Congress on Computational Mechanics (WCCM8), 5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008), June 30 - July 5, 2008, Venice, Italy, 2008.
  • 197. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling. Numerical Recipes in C. Cambridge University Press, 1988.
  • 198. R. Puppini, M. Diez, A. Ibba, M. Avalle, I. Ciglaric, F. Feist. Generic car (FE) models for categories super minis, small family cars, large family/executive cars, MPV, heavy vehicle. Report no. D714A, EC FP6 Project APROSYS, 2006.
  • 199. J. Putresza. Optymalizacja konstrukcji z uwzględnieniem jej niezawodności. Praca Dokt., IPPT PAN, 1992.
  • 200. R. Rackwitz, B. Fiessler. Structural reliability under combined random load sequences. Computers and Structures, 9:484–494, 1978.
  • 201. S. Rahman, H. Xu. A univariate dimension-reduction method for multidimensional integration in stochastic mechanics. Probabilistic Engineering Mechanics, 19:393–408, 2004.
  • 202. M.R. Rajashekhar, B.R. Ellingwood. A new look at the response surface approach for reliability analysis. Structural Safety, 12:205–220, 1993.
  • 203. S. Rangavajhala, A. Mullur, A. Messac. The challenge of equality constraints in robust design optimization: examination and new approach. Structural and Multidisciplinary Optimization, 34:381–401, 2007.
  • 204. S. Reh, J.D. Beley, S. Mukherjee, E.H. Khor. Probabilistic finite element analysis using ANSYS. Structural Safety, 28:17–43, 2006.
  • 205. D.S. Riha, H.R. Millwater, B.H. Thacker. Probabilistic structural analysis using a general purpose finite element program. Finite Elements in Analysis and Design, 11:201–211, 1992.
  • 206. J. Rojek. Modelowanie i symulacja komputerowa złożonych zagadnień mechaniki nieliniowej metodami elementów skończonych i dyskretnych (rozprawa habilitacyjna). Prace IPPT, 4, 2007.
  • 207. J. Rojek, M. Kleiber, A. Piela, R. Stocki, J. Knabel. Deterministic and stochastic analysis of failure in sheet metal forming operations. Steel Grips - Journal of Steel and Related Materials, 2:29–34, 2004.
  • 208. J. Rojek, E. O˜nate, E. Postek. Application of explicit FE codes to simulation of sheet and bulk metal forming processes. Journal of Materials Processing Technology, 80-81:620–627, 1998.
  • 209. M. Rosenblatt. Remarks on multivariate transformation. The Annals of Mathematical Statistics, 23:470–472, 1952.
  • 210. J. Sacks, W.J. Welch, T.J. Mitchell, H.P. Wynn. Design and analysis of computer experiments. Statistical Science, 4(4):409–435, 1989.
  • 211. E. Saliby. Descriptive sampling: an improvement over Latin hypercube sampling. w: Proceedings of the Winter Simulation Conference, 1997.
  • 212. E. Sandgren, T.M. Cameron. Robust design optimization of structures through consideration of variation. Computers and Structures, 80:1605–1613, 2002.
  • 213. M.J. Sasena, M. Parkinson, M.P. Reed, P.Y. Papalambros, P. Goovaerts. Improving an ergonomic testing procedure via approximation-based adaptive experimental design. ASME Journal of Mechanical Design, 127:1006–1013, 2005.
  • 214. K. Schittkowski. The nonlinear programming method of Wilson, Han and Powell with an augmented lagrangian type line search function, Part 1: Convergence analysis, Part 2: An efficient implementation with linear least squares subproblems. Numerische Mathematik, 38:83–127, 1981.
  • 215. K. Schittkowski. User’s guide for the nonlinear programming code NLPQL. Handbook to optimization program package NLPQL, University of Stuttgart - Institute for Informatics, Germany, 1985.
  • 216. K. Schittkowski, C. Zillober, R. Zotemantel. Numerical comparison of nonlinear programming algorithms for structural optimization. Structural Optimization, 7:1–19, 1994.
  • 217. G.I. Schueller, R. Stix. A critical appraisal of methods to determine failure probabilities. Structural Safety, 4:293–309, 1987.
  • 218. K. Shimoyama, A. Oyama, K. Fujii. A new efficient and useful robust optimization approach - design for multi-objective six sigma. w: The 2005 IEEE Congress on Evolutionary Computation, volume 1, 950–957, 2005.
  • 219. T.W. Simpson. A concept exploration method for product family design. Praca Dokt., Georgia Institute of Technology, 1998.
  • 220. T.W. Simpson, A.J. Booker, D. Ghosh, A.A Giunta, P.N. Koch, R.-J. Yang. Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Structural and Multidisciplinary Optimization, 27:302–313, 2004.
  • 221. T.W. Simpson, T.M. Mauery, J.J. Korte, F. Mistree. Kriging metamodels for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, 39(12):2233–2241, 2001.
  • 222. T.W. Simpson, J.D. Peplinski, P.N. Koch, J.K. Allen. Metamodels for computer- based engineering design: survey and recomendations. Engineering with computers, 17:129–150, 2001.
  • 223. P. Śniady. Random vibrations and reliability of structures under various loads. w: Proc. of OMAE1996, Safety and Reliability, ASME, vol.II, 143–150, Florence, 1996.
  • 224. P. Śniady, R. Sieniawska, S. Żukowski. Reliability of bridge beams with hybrid cross-sections. Archives of Civil and Mechanical Engineering, 3:13–23, 2003.
  • 225. J.D. Sorensen, P. Thoft-Christensen, A. Siemaszko, J.M.B. Cardoso, J.L.T. Santos. Interactive reliability-based optimal design. w: Reliability and Optimization of Structural Systems, Proc. 6th IFIP WG 7.5 Conf., Assisi, Sept. 7–9, 1994, 243–253. Chapman & Hall, 1995.
  • 226. J.C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley-Interscience, 2003.
  • 227. ST-ORM, A Meta-Computing System for Stochastic Optimization and Robustness Management. EASi Engineering GmbH, Germany, 2000.
  • 228. N. Stander,W. Roux,M. Giger,M. Redhe, N. Fedorova, J. Haarhoff. Crashworthiness optimization in LS-OPT: case studies in metamodelling and random search techniques. w: Proc. 4th European LS-DYNA Users Conference, Ulm, 22–23 May, 2003.
  • 229. N. Stander, W. Roux, T. Goel, T. Eggleston, K. Craig. LS-OPT User’s Manual. A Design Optimization and Probabilistic Analysis Tool for the Engineering Analyst. Ver. 4.0. Livermore Software Technology Corporation, Livermore, California 94551, 2009.
  • 230. R. Stocki. Niezawodnościowa optymalizacja konstrukcji prętowych w zakresie dużych przemieszczeń - teoria i program komputerowy. Praca Dokt., IPPT PAN, 1999.
  • 231. R. Stocki. A method to improve design reliability using optimal Latin hypercube sampling. Computer Assisted Mechanics and Engineering Sciences, 12:393–411, 2005.
  • 232. R. Stocki, K. Kolanek, S. Jendo, M. Kleiber. Computational aspects of discrete reliability-based optimization of structural systems. w: Proc. ECCM-2001 European Conference on Computational Mechanics, Cracow, Poland, June 26-29, 2001. na CD.
  • 233. R. Stocki, K. Kolanek, S. Jendo, M. Kleiber. Study on discrete optimization techniques in reliability-based optimization of truss structures. Computers and Structures, 79(22–25):2235–2247, 2001.
  • 234. R. Stocki, K. Kolanek, J. Knabel, P. Tauzowski. FE based structural reliability analysis using STAND environment. Computer Assisted Mechanics and Engineering Sciences, 16:35–58, 2009.
  • 235. R. Stocki, A. Siemaszko, M. Kleiber. Interactive methodology for reliability-based structural design and optimization. Computer Assisted Mechanics and Engineering Sciences, 6:39–62, 1999.
  • 236. R. Stocki, T. Szolc, P. Tauzowski, J. Knabel. Robust design optimization of the vibrating rotor shaft system subjected to rubbing constrains. w: Proc. 8th IFToMM International Conference on Rotordynamics, Seoul, Korea, 12–15 September, 2010.
  • 237. R. Stocki, P. Tauzowski, M. Kleiber. Efficient sampling techniques for stochastic simulation of structural systems. Computer Assisted Mechanics and Engineering Sciences, 14:127–140, 2007.
  • 238. R. Stocki, P. Tauzowski, J. Knabel. Reliability analysis of a crashed thin-walled s-rail accounting for random spot weld failures. International Journal of Crashworthiness, 13:693–706, 2008.
  • 239. H. Streicher, R. Rackwitz. Reliability-oriented optimization for time-invariant problems with optimization algorithm JOINT 5, research report. Technical Report Project 28159, EU-Project ASRA-HPC - Advanced Structural Reliability Analysis on High Performance Computers, 2001.
  • 240. H. Streicher, R. Rackwitz. Structural optimization - a one level approach. w: S. Jendo, K. Doliński, M. Kleiber (eds.), AMAS Workshop on Reliability-Based Design and Optimization - RBO’02, 2002.
  • 241. B. Stroustrup. C++ Programming Language (special Edition). Addison Wesley, 2000.
  • 242. STRUREL: Structural Reliability Analysis Program Package, User’s manual. RCP GmbH, Barrer Strasse 48, Munich, Germany, 1999.
  • 243. M.B. Subrahmanyam. An extension of the simplex method to constrained nonlinear optimization. Journal of Optimization Theory and Applications, 62:311–319, 1989.
  • 244. B. Sudret. Uncertainty propagation and sensitivity analysis in mechanical models – Contributions to structural reliability and stochastic spectral methods. Clermont-Ferrand (France): Habilitation a diriger des recherches. Universite Blaise Pascal, 2007.
  • 245. B. Sudret, A. Der Kiureghian. Stochastic Finite Element and Reliability. A State- of-the-Art Report. Technical report, Departament of Civil and Environmental Engineering, University of California, Berkeley, 2000.
  • 246. E. Szeliga, M. Witkowski. Teoria zbiorów rozmytych i jej zastosowania w wybranych zagadnieniach technicznych. w: Sieci Neuronowe, Algorytmy Genetyczne, Zbiory Rozmyte. Rzeszow 28-29 maja, 141–164. Studio BEL s.c., 1999.
  • 247. G. Taguchi, S. Chowdhury, Y. Wu. Taguchi’s Quality Engineering Handbook. Wiley, 2005.
  • 248. L.C. Tang, K. ; Xu. A unified approach for dual response surface optimization. Journal of Quality Technology, 34:437–447, 2002.
  • 249. B.H. Thacker, D.S. Riha, S.H.K. Fitch, L.J. Huyse, J.B. Pleming. Probabilistic engineering analysis using the NESSUS software. Structural Safety, 28:83–107, 2006.
  • 250. P. Thoft-Christensen. On reliability-based structural optimization. w: A. Der Kiureghian, P. Thoft-Christensen (eds.), Reliability and Optimization of Structural Systems, Proc. 3rd IFIP WG 7.5 Conf., Berkeley, 26–27 March 1990, 387–402. Springer-Verlag, 1990.
  • 251. M. Tisza. Numerical modelling and simulation in sheet metal forming. Journal of Materials Processing Technology, 151:58–62, 2004.
  • 252. Y. Tsompanakis, N.D. Lagaros, M. Papadrakakis (eds.). Structural Design Optimization Considering Uncertainties, Structures and Infrastructures Series. Taylor and Francis, 2007.
  • 253. J. Tu, K.K. Choi. A new study on reliability based design optimization. ASME Journal of Mechanical Design, 121(4):557–564, 1999.
  • 254. E. Vanmarcke. Random Fields: Analysis and Synthesis. The MIT Press, Cambridge, Massachussets, 1983.
  • 255. E. Vanmarcke, M. Grigoriu. Stochastic finite element analysis of simple beams. Journal of Engineering Mechanics ASCE, 109(5):1203–1214, 1983.
  • 256. G.G. Vining, R.H. Myers. Combining Taguchi and response surface philosophies: a dual response approach. Journal of Quality Technology, 22:38–45, 1990.
  • 257. Y.-T. Wu, H.R. Millwater, T.A. Cruse. Advanced probabilistic structural analysis method for implicit performance functions. AIAA Journal, 28:1663–1669, 1990.
  • 258. Y. Xiong, W. Chen, D. Apley, X. Ding. A non-stationary covariance-based Kriging method for metamodelling in engineering design. International Journal for Numerical Methods in Engineering, 71:733–756, 2006.
  • 259. H. Xu, S. Rahman. A generalized dimension-reduction method for multidisciplinary integration in stochastic mechanics. International Journal for Numerical Methods in Engineering, 61:1992–2019, 2004.
  • 260. R.R. Yager. A note on probabilities of fuzzy events. Information Sciences, 18:113–129, 1979.
  • 261. R.-J. Yang, C. Chuang, L. Gu, G. Li. Experience with approximate reliability-based optimization methods II: an exhaust system problem. Structural and Multidisciplinary Optimization, 29:488–497, 2005.
  • 262. R.-J. Yang, L. Gu. Experience with approximate reliability-based optimization methods. Structural and Multidisciplinary Optimization, 26(1–2):152–159, 2004.
  • 263. R.-J. Yang, L. Gu, C.H Tho, K.K. Choi, B.D Youn. Reliability-Based Multidisciplinary Design Optimization of Vehicle Structures. w: International Conference on Statistics and Analytical Methods in Automotive Engineering, 187–196. IMechE, 2002.
  • 264. K.Q. Ye, W. Li, A. Sudjianto. Algorithmic construction of optimal symmetric Latin hypercubes. Journal of Statistical Planning and Inference, 90:145–159, 2000.
  • 265. O. Yeniay, R. Unal, R.A. Lepsch. Using dual response surfaces to reduce variability in launch vehicle design: A case study. Reliability Engineering and System Safety, 91:407–412, 2006.
  • 266. X. Yin, W. Chen. Enhanced sequential optimization and reliability assessment method for probabilistic optimization with varying design variance. Structure and Infrastructure Engineering, 2(3–4):261–275, 2006.
  • 267. B.D. Youn, K.K. Choi. A new response surface methodology for reliability-based design optimization. Computers and Structures, 82(2–3):241–256, 2004.
  • 268. B.D. Youn, K.K. Choi, L. Du. Enriched performance measure approach for reliability-based design optimization. AIAA Journal, 43(4):874–884, 2005.
  • 269. B.D. Youn, K.K. Choi, Y.H. Park. Hybrid analysis method for reliability-based design optimization. ASME Journal of Mechanical Design, 125(2):221–232, 2003.
  • 270. B.D. Youn, K.K. Choi, R.-J. Yang, L. Gu. Reliability-based design optimization for crashworthiness of vehicle side impact. Structural and Multidisciplinary Optimization, 26(3–4):272–283, 2004.
  • 271. L.A. Zadeh. Fuzzy sets. Information and control, 8:338–353, 1965.
  • 272. C. Zang, M.I. Friswell, J.E. Mottershead. A review of robust optimal design and its application in dynamics. Computers and Structures, 83:315–326, 2005.
  • 273. J. Zhang, M.M. Wiecek, W. Chen. Local approximation of the efficient frontier in robust design. Transactions of ASME, Journal of Mechanical Design, 122:232–236, 1999.
  • 274. W. Zhang, R. Shivpuri. Probabilistic design of aluminium sheet drawing for reduced risk of wrinkling and fracture. Reliability Engineering and System Safety, 94:152–161, 2009.
  • 275. X. Zhang, H.-Z. Huang. Sequential optimization and reliability assessment for multidisciplinary design optimization under aleatory and epistemic uncertainties. Structural and Multidisciplinary Optimization, 40:165–175, 2010.
  • 276. Y. Zhang, A. Der Kiureghian. Finite element reliability methods for inelastic structures. Report No. UCB/SEMM-97/05, Department of Civil & Enviromental Engineering, University of California, Berkeley, CA, 1997.
  • 277. K. Ziha. Descriptive sampling in structural safety. Structural Safety, 17:33–41, 1995.
  • 278. T. Zou, S. Mahadevan, Z.P. Mourelatos, P. Meernik. Reliability analysis of automotive body–door subsystem. Reliability Engineering and System Safety, 78(3):315–24, 2002.
  • 279. T. Zou, S. Mahadevan, Z.P. Mourelatos, P. Meernik. Reliability Analysis of systems with nonlinear limit states; application to automotive door closing effort. w: Reliability & Robust Design in Automotive Engineering, 19–29. SAE International, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB4-0055-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.