PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Analiza doświadczalna własciwości termomechanicznych stopów TiNi oraz poliuretanu z pamięcią ksztaltu

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Experimental analysis of thermomechanical properties of TiNi SMA and shape memory polyurethane
Języki publikacji
PL
Abstrakty
PL
Niniejsza rozprawa przedstawia wyniki badan sprz^zen termodynamicznych zachodz^cych podczas indukowanej napr^zeniami przemiany fazowej w stopach TiNi z pami^ciq, ksztaltu (SMA) oraz termomechaniczne wlasciwosci poliuretanu z pami^ci^ ksztaltu (SMP), przeprowadzonych w IPPT PAN oraz w AIT w Japonii. W ramach pracy przeprowadzono na maszynach wytrzymalosciowych badania zmian parametrow mechanicznych oraz, za pomocq, kamery termowizyjnej, obserwacje zmian temperatury probek tych materialow w procesie jednoosiowego rozci^gania, prostego scinania oraz odksztalcen cyklicznych realizowanych z roznymi pr^dkosciami odksztalcania. Wykazano, ze przemiana martenzytyczna wprost i odwrotna, zachodz^ca podczas pseudospr^zystego odksztalcania stopow z pami^ci^ ksztaltu, moze miec charakter niejednorodny, niezaleznie od rodzaju, pr§dkosci czy sposobu sterowania odksztalceniem probki. Makroskopowo rozwija si? ona w zlokalizowanych cienkich pasmach, podobnych do pasm Ludersa, w dwoch prawie prostopadlych kierunkach. Niejednorodnosci przemiany martenzytycznej udokumentowano w technice badan w podczerwieni oraz fotografuj^c relief na powierzchni probki. Wykazano, ze istnieje mozliwosc oddzialywania na przebieg zainicjowanych juz przemian fazowych w stopie z pami^ciq, ksztaltu. Zbadano efekty termomechaniczne zwi^zane z inicjacj^, rozwojem i zanikiem przemiany w warunkach wprowadzanych przystankow w gal?ziach obci^zania i odci^zania p?tli pseudospr?zystosci. Wykorzystuj^c wyznaczone doswiadczalnie parametry badanego stopu TiNi oraz stosuj^c termodynamicznq. teori? przemiany fazowej stopow z pami^ci^ ksztaltu, przeprowadzono energetyczny bilans przemiany indukowanej napr^zeniem dla przypadku jednoosiowego rozciqgania dla roznych pr^dkosci odksztalcania. Wyznaczono zmiany napr^zenia i temperatury podczas rozci^gania i prostego scinania poliuretanu z pami^ci^ ksztaltu oraz zbadano stopien odzyskiwania ksztaltu i wlasciwosci po odksztalcaniu i wygrzaniu powyzej jego temperatury zeszklenia.
EN
The thesis presents results of experimental investigations of thermomechanical couplings related to stress-induced martensite transformation in TiNi shape memory alloy (SMA) and thermomechanical properties of shape memory polyurethane (SMP) carried out at IFTR PAS and Aichi Institute of Technology in Japan. The investigations of mechanical properties of the SMA and SMP specimens subjected to uniaxial tension, simple shear, as well as cyclic loadings, have been carried out on testing machines with various strain rates. Also the temperaturę changes have been recorded with use of an thermovision camera. It has been demonstrated that the forward and reverse martensitic transformation, related to the SMA pseudoelastic behavior, can occur in inhomogeneous way in Liiders-like bands developing in two almost perpendicular directions, for both stress- and strain-controlled tension tests, at various strain rates. The martensite transformation heterogeneity has been confirmed by infrared techniąue and by photographs of the SMA specimen surface relief. It has been proved that it is possible to control the process of martensite transformation not only by the temperaturę but also by the stress changes, due to the thermomechanical couplings. The effects of thermomechanical couplings related to the nucleation, development and vanishing of the stress-induced martensite transformation have been studied in terms of the introduced breaks in loading and unloading branches of the SMA pseudoelastic loop. Basing on the thermodynamic theory, complemented by the estimated material parameters of TiNi and uding the stress-and temperature-strain characteristics found during tension tests, an energy balance for the stress-induced forward and reverse martensite transformation for various strain rates has been calculated. Mechanical and temperature characteristics of a shape memory polyurethane subjected to tension and simple shear processes have been found. Shape recovery of defects introduced in the glass state and removed during the subsequent heating above the polymer glass transition temperature has been studied.
Rocznik
Tom
Strony
1--214
Opis fizyczny
Bibliogr. 157 poz.
Twórcy
autor
  • Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk
Bibliografia
  • 1. Abrahamson E.R., Lakę M.S., Mushi N.A., Shape Memory Polymers for Elastic Memory Composites, Proc. 43rd Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, 2002.
  • 2. Beghi GM., Bottani CE., Caglioti G, Irreversible Thermodynamics of Metals under Stress, Res Mechanica, 19, 365-379, 1986.
  • 3. Bever M.B., Holt D.L., Titchener A.L., The Stored Energy of Cold Work, Progress in Materials Science, 17, Pergamon, New York, 1973.
  • 4. Bhattacharyya A. and Lagoudas DC, Thermoelectric shape memory actuators and issue of thermomechanical coupling, Journal de Physiąue IV, 7, C5, 674-678, 1997.
  • 5. Bhattacharyya A., Tobushi H., Analysis of isothermal mechanical response of a shape memory polymer rheological model, Polymer Engineering and Science, 40, 12, 2000.
  • 6. Bojarski Z., Morawiec H., Metale z pamięcią kształtu, Współczesna Nauka i Technika, Nowe Materiały i Technologie, PWN, Warszawa, ISBN 83-01-09346-3, 1989.
  • 7. Buechler W.J., Gilfrich J.W. and Wiley R.C., Effect of low-temperature phase changes on mechanical properties of alloys near composition TiNi, J. Appl Phys., 34, 1475-1477, 1963.
  • 8. Bundara B., Tokuda M. and Ye M., SMA-Present State and Perspective for New Applications, Shape Memory Materials, Proc. Int. Symp. SMMX99, Ed. by T. Saburi, Kanazawa, Japan, 1999.
  • 9. Carlo M., Using Synthetic Biology to Engineer Sentinent Materiał & Systems; Proc. 6th International Conf. on Intelligent Materials and Systems, Nanotechnology Frontier, ICIM705, Tokyo, 163-166, 2005.
  • 10. Chang L.C. and Read TA., Plastic deformation and difiusionless phase changes in metals: the gold-cadmium betaphases, Trans. ofAIME, 191,47-52, 1951.
  • 11. Chrysochoos A. and Martin G., Tensile Test Microcalorimetry for Thermomechanical Behavior Law Analysis, Mater. Sci. Eng, A108, 25-32, 1989.
  • 12. Chu Y.Y. and Zhao L.C, Shape Memory Materials and Its Applications, Proceedings of Int. Conf. on Shape Memory and Superelastic Materials, Kuming, SMST-SMM, China, 2001.
  • 13. Crowson A., Proceedings ofthe Third International Conference on Intelligent Materials, Lyon, France, 1996.
  • 14. Dały S., Ravichandran G, Bhattacharya K., Stress-induced mąrtensitic phase transformation in thin sheets of Nitinol, California Łistitute of Technology, Acta Materialia, 55, 3593-3600, 2007.
  • 15. Duering T.W., Melton K.N., Stockel D. and Wayman C.M., Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London, 1990.
  • 16. Dutkiewicz J.M., Maziarz W., Czeppe T, Lityńska L., Nowacki W.K., Gadaj S.P., Luckner J., Pieczyska E.A., Powder metalluigy technology of NiTi shape memory alloy, Eur. Phys. J., 158, 59-65, 2008.
  • 17. Faciu C, Mihailescu-Suliciu M., On modeling phase propagation in SMAs by a Maxwellian thermo-viscoelestic approach, Int. J. Solids Struct., 39, 3811-3830, 2002.
  • 18. Favier D., Guelin P, Nowacki W.K., Pegon P, Discrete memory schemes for finite strain thermoplasticity and application to shape memory alloys, Transactions of the 9th International Conference on S.M.I.R.T., Lausanne, 163-170, 1987.
  • 19. Fremond M. and Miyazaki S., Shape Memory Alloys, Springer-Verlag, 69-147, 1996.
  • 20. Funakubo H. (Ed.), Shape Memory Alloys, Gordon and Breach, New York, 1998.
  • 21. Funakubo H., Shape Memory Alloys, edited by University ofTokyo, transl. from Japanese by J.B. Kennedy, Stanford University, 1987.
  • 22. Furuichi Y, Tobushi H. and Matsui R., Fatigue Properties of TiNi SMA Wire in Bending, Trans. Mat Res. Soc. Japan, 28, 3, 615-618, 2003.
  • 23. Furuichi Y, Tobushi H., Ikawa T. and Matsui R., Fatigue Properties of TiNi Shape Memory Alloy Wire in Bending, Proc. Instn. Mech. Engrs., Vol. 217, Part L; J. Materials: Design and Applications, 93-99, 2003.
  • 24. Gadaj S.P., Nowacki W.K. and Pieczyska E.A., Temperaturę evolution in deformed shape memory alloy, InfraredPhysics & Tech, 43, 151-155, 2002.
  • 25. Gadaj S.P., Nowacki W.K. and Tobushi H., Temperaturę evolution during tensile test of TiNi shape memory alloy, Arch Mech., 51, 6, 649-663, 1999.
  • 26. Gadaj S.P., Nowacki W.K., Pieczyska E.A., Changes of temperaturę during the simple sheartest of stainless steel, Arch. Mech., 48, 4, 779-788, 1996.
  • 27. Gadaj S.P., Nowacki W.K., Pieczyska E.A., Termomechanical couplings in copolimer for various kinds of loadings, XXI Symposium of Solid mechanics, Jachranka, 207-212, 2004.
  • 28. Gadaj S.P., Nowacki W.K., Pieczyska E.A., Tobushi H., Temperaturę measurement as a new techniąue applied to the phase transformation study in a TiNi shape memory alloy subjected to tension, Arch. Metali. Materials, 50, 661-674,2005.
  • 29. Gadaj S.P., Pieczyska E.A., Nowacki W.K., Temperaturę changes of the polymer fibrous belts subjected to mechanical loading, Engineering Transactions, 53, 2, 147-163, 2005.
  • 30. Gary G, Nowacki W.K., Essai de cisaillement plan dynamiąue appliąuee a des tóles minces, Journal de Physiąue IV, Colloąue C8, supplement au Journal de Physiąue III, 4, 65-70, 1994.
  • 31. Gibson L.J., Ashby ME, Cellular Solids. Structure and Properties, Cambridge University Press, 309 - 344, 1997.
  • 32. Guelin R, Nowacki W.K., Stress waves in elastic-plastic solids with discrete memory, Journal ofTechnical Physics, 33, 2, 167-204, 1992.
  • 33. Hayashi A., Tokuda M., Inaba T. and Hashimoto K., Experimental Research on Mechanical Properties of a New TiNi Shape Memory Alloy, Key Engineehng Materials, Vols. 274-276, 1089-1098,2004.
  • 34. Hayashi S., Properties and Applications of Polyurethane-series Shape Memory Polymer, Int. Progress in Urethanes, Vol. 6, 90 -115, 1993.
  • 35. He Y.J and Sun Q.P., Modeling and simulation of deformation pattern evolution during stress-induced martensite phase transformation in TiNi microtubes, TMSMinerals, Metals & Materials Society, 2005.
  • 36. Heim D., Haupt P., Thermomechanical behavior of shape memory alloys, Proc. ofSPIE's Smart Structures and Materials, SPE , Vol. 4333, 302-313, 2001.
  • 37. Holtz R.L., Sadananda K. and Iman M.A., Fatigue thresholds of NiTi alloy near the shape memory transition temperaturę, International Journal of Fatigue, 21, S 137-S 145, 1999.
  • 38. Hosoda H., Hosoda N. and Miyazaki S., Mechanical Properties of Ti-Mo-Al Biómedical Shape Memory Alloys, Trans. Mat. Res. Soc. Japan, 26, 1, 243-246, 2001.
  • 39. Iadicola M.A. and Show J.A., Ratę and thermal sensitivities of unstable transformation behavior in a shape memory alloy, Int. J. Plasticity, 20-4/5, 577-605, 2004.
  • 40. Inamura T., Fukui Y., Hosoda H.H., Wakashima K. and Miyazaki S., Mechanical properties of Ti-Nb biómedical shape memory alloys containing Ge or Ga, Materials Science and Engineehng C, 25, 426-432, 2005.
  • 41. Irie M., Development and Application of Shape memory Polymers, CMC, 1989 (in Japanese).
  • 42. Kim H.Y., Ohmatsu Y., Kim J.I., Hosoda H. and Miyazaki S., Mechanical properties and shape memory behavior of Ti-Mo-Ga Alloys, Materials Transactions, 45, 4, 1090-1095, 2004.
  • 43. Kim H.Y., Satoru H., Kim J.I., Hosoda H. and Miyazaki S., Mechanical Properties and Shape memory behavior of Ti-Nb Alloys, Materials Transactions, 45, 7, 2443-2448, 2004.
  • 44. Kim J.I., Kim H.Y., Hosoda H. and Miyazaki S., Shape memory behavior of Ti-22Nb(0.5-2.0)O(at%) Biomedical Alloys, Materials Transactions, 46, 4, 852-857, 2005.
  • 45. Kim J.I., Kim H.Y., Inamura T., Hosoda H. and Miyazaki S., Shape memory characteristics of Ti-22Nb-(2-8)Zr(at%) biomedical alloys, Materials Science and Engineering A, 403, 334-339, 2005.
  • 46. Kuczma M.S., Mielke A., Stein E., Modeling of hysteresis in two phase systems. Arch Mech, 51, 6, 693-715, 1999.
  • 47. Lekston Z., Drugacz J., Morawiec H., Application of superelastic NiTi wires for mandibular distraction, Materials Science and Engineering A, 378, 537-541, 2004.
  • 48. Lendlein A., Jiang H., Jungę O. & Langer R., Light-induced shape-memory polymers, Naturę, 434, 879-882, 2005.
  • 49. Li Z. Q. and Sun Q.P., The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension, Int. Journal ofPlasticity, 18,1481-1498,2002.
  • 50. Lin P.H., Tobushi H, Tanaka K., Hattori T. and Makita M, Pseudoelastic behavior of TiNi shape memory alloy subjected to strain variations, J. lntell Mat Syst Struct, 5, 694-701, 1994.
  • 51. Liu L.H, Yang H., Wang L.M. and Zheng YR, Recent Development of the SMA Industry in China; Shape Memory Materials and Its Applications, Proceedings oflnt Confon Shape Memory and Superelastic Materials, edited by Y.Y Chu and L.C. Zhao, SMST-SMM Kuming, China, 2001.
  • 52. Louche H. and Chrysochoos A., Thermal and dissipated effects accompanying Luders band propagation, Mat. Sci. Eng. A, 307-1/2, 15-22, 2001.
  • 53. Luo Y., Takagi T., Okuyama T., Amae S., Wada M., Nishi K., Kamiyama T., Yambe T., Matsuki H., Functional Evaluation of an Artificial Anal Sphincer Using Shape memory Alloy, ASAIO Journal, 2004.
  • 54. Mabe J.H., Ruggeri R.T., Rosenzweig E., Yu C.J., NiTinol Performance Characterization and Rotary Actuator Design, Smart Structures and Materials, SPIEVol. 5388,2004.
  • 55. Maldague X.P., Theory andPractice in Infrared Technology for Nondestructive Testing, John Wiley and Sons, N.Y, 2001.
  • 56. Matsui R., Tobushi H. and Ikawa T, Transformation-induced creep and stress relaxation of TiNi shape memory alloy, Proc. Instn. Mech. Engrs., Part L: J. Materials: Design and Applications, 218, 343-353, 2004.
  • 57. Matsui R., Tobushi H., Furuichi Y and Horikawa H., Tensile Deformation and Rotating-Bending Fatigue Properties of a Highelastic Thin Wire, a Superelastic Thin Wire and a Superelastic Thin Tubę of TiNi Shape Memory Alloy, Trans. ASME, J. Eng. Mater. Tech., 126, 384-391, 2004.
  • 58. Matsui R., Tobushi H., Horikawa H. and Furuichi Y, Fatigue Properties of Highelastic Thin Wire and Superelastic Thin Tubę of TiNi Shape Memory Alloy, Trans. Mat. Res. Soc. Japan, 29 ,7, 3053-3056, 2003.
  • 59. Mc J.L., Nichols J.R. and Brookes P.C., NiTi Fatigue behavior, J. Appl. Phys., 52,12,7442-7444,1981.
  • 60. Mc Kelvey A.L. and Ritchie R.O., Fatigue crack growth behavior in the superelastic and shape-memory alloy nitinol, Metallurg. Mat. Trans. A, 32A, 731-743,2001.
  • 61. Melton K.N. and Mercier O., Fatigue of TiNi Thermoelastic Martensites, Acta Metallurgica, 27, 137-144, 1979.
  • 62. Mertmann M., Vergani G, Design and Application of Shape Memory Actuators, Memory-Metalle GmbH, Germany, Proc. EMRS Fali Meeting, Warsaw, 2007.
  • 63. Mikuriya S., Nakahara T., Tobushi H. and Watanabe H., The Estimation of Temperaturę Rise in Low-Cycle Fatigue of TiNi Shape-Memory Alloy, ISME Int. J., A, Vol. 43, No. 2, 166-172, 2002.
  • 64. Miyazaki S. and Otsuka K., Deformation and Transition Behavior Associated with the R-Phase in the TiNi Alloys, Metali. Trans. A, Vol. 17A, 53-63, 1986.
  • 65. Miyazaki S., Development and characterization of SMAs, Shape Memory Alloys, M. Fremond and S. Miyazaki, Springer Wien, 69-147, 1996.
  • 66. Miyazaki S., No V.H., Kitamura K., Khantachwana A., Hosoda H., Texture of Ti-Ni rolled thin plates and sputter-deposited thin films, Int. J. Piast., 16, 1135-1154,2000.
  • 67. Miyazaki S., Ishida A., Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films, Materials Science and Engineering, A273-375, 106-133, 1999.
  • 68. Morawiec H., Raniecki B., Ziółkowski A., Podstawy termomechaniki materiałów z pamięcią kształtu, Współczesne Trendy w Mechanice Materiałów, red. W.K. Nowacki, Warszawa, 1996.
  • 69. Muller L, Wilmański K., A model for phase transition in pseudoelastic bodies, IlNuovo Cimiento, 57 B, 283- 289, 1980.
  • 70. Muller I., Xiu H., On the pseudoelastic hysteresis, Acta Metali. Mater., 39; 263-271, 1991.
  • 71. Murasawa G, Koushinbou M., Yoneyama S., Sakuma T. and Takashi M., Measurement of Inhomogeneous Deformation Behavior Arising in SMA, J. Soc. Mat. &/., Japan, 53, 9, 999-1005, 2004.
  • 72. Nowacki W.K. and Klepaczko J.R., New Experimental Methods in Materiał Dynamics andlmpact, Warsaw, ISBN 83-910387-7-7, 2001.
  • 73. Nowacki W.K., Gadaj S.R, Pieczyska E.A. and Tobushi H., Thermomechanical properties ofTiNi shape memory alloys, eds. KJ. Kurzydłowski, B. Major and. P. Zięba, Research Signpost, 195-240, ISBN: 81- 308-0093-4, 2006.
  • 74. Nowacki W.K., Nguyen H.V, Dynamie Simple Shear Test. Experiment and Numerical Łivestigation, Proc. 9th DYMATTechl Conference, Munich, 1995.
  • 75. Nowacki W.K., Pieczyska E.A., Gadaj S.P., Tobushi H. and Takagi M., Shape Memory Alloy under Strain- and Stress-Controlled Conditions - Thermomechanical Aspects of Martensite and Reverse Transformations, Abstracts Book and CD-ROMProceedings of21st ICTAM 04, Warsaw, 2004.
  • 76. Oliferuk W., Experimental investigations of thermomechanical couplings in TiNi shape memory alloy during a torsion- tension (compression) test, Arch. Mech, 51, 6, 717-726, 1999.
  • 77. Otsuka K. and Wayman CM. (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1998.
  • 78. Pełton A.R., Hodgson D. and Duering T, Proceedings of the first Int. Conf. on Shape Memory and Superelastic Technologies, edited by USA, SMST-94, 1994.
  • 79. Pieczyska E.A., Gadaj S.P, Thermoelastic effect during tensile cyclic deformation, Engin. Trans., 45, 2, 295 - 303, 1997.
  • 80. Pieczyska E.A, Gadaj S., Nowacki W.K., Hoshio K., Makino Y. and Tobushi H., Characteristics of Energy Storage and Dissipation in TiNi Shape Memory Alloy, Science and Technology ofAcbanced Materials, 6, 889-894, 2005.
  • 81. Pieczyska E.A., Gadaj S.P, Termomechanika materiałów lepko-sprężysto-plastycznych dla różnych prędkości deformacji, Raport Grantu KBN8T07A 046 20,2001-2004.
  • 82. Pieczyska E.A., Nowacki W.K., Sakuragi T and Tobushi H., Superelastic deformation properties of shape memory alloy, Key Engineering Materials, Vols. 340-341, 1211-1216,2007.
  • 83. Pieczyska E.A., Tobushi H., Gadaj S.P, Nowacki W.K., Hoshio K. and Makino Y., Analysis of Martensite and Reverse Transformations in TiNi Shape Memory Alloy by Advance Infrared Techniąue, Proc. Japanese Experimental Mechanics Conf., Chubu University, 3-8, 2006.
  • 84. Pieczyska E.A., Gadaj S.P, Nowacki W.K., Temperaturę changes in polyamide subjected to tensile deformation, Infrared Physics and Technology, Vol.43/3-5, pp. 183-186, 2002.
  • 85. Pieczyska E.A, Gadaj S.P, Nowacki W.K, Luckner J. and Tobushi H, Martensite and Reverse Transformation during Simple Shear of NiTi Shape Memory Alloy, Strain (w druku).
  • 86. Pieczyska E.A, Gadaj S.P. and Nowacki W.K, Thermoelastic and thermoplastic effects investigated in steel, polyamide and shape memory alloys, Proc. ofSPIE, Thermosense XXIV, Orlando, USA, 4710,479 - 487, 2002.
  • 87. Pieczyska E.A, Gadaj S.P, Nowacki W.K. and Tobushi H, Investigation of nucleation and propagation of phase transitions in TiNi SMA, QIRT Journal, 1 -1,117-127,2004.
  • 88. Pieczyska E.A, Gadaj S.P, Nowacki W.K. and Tobushi H, Phase transformation front evolution for stress- and strain-controlled tests in TiNi shape memory alloy, ExperimentalMechanics, 46, 4, 531-542, 2006.
  • 89. Pieczyska E.A, Gadaj S.P, Nowacki W.K. and Tobushi H, Phase Transformation Front Development and Transformation-Induced Stress Relaxation Effects in TiNi Shape Memory Alloy; Proc. 6,h International Conf. on Intelligent Materials and Systems, Nanotechnology Frontier, ICIM705, Tokyo, 163-166,2005.
  • 90. Pieczyska E.A, Gadaj S.P, Nowacki W.K. and Tobushi H, Thermomechanical Investigations of Martensite and Reverse Transformations in TiNi Shape Memory Alloy; Buli. Pol. Ac, Tech. 52-3, 165-171, 2004.
  • 91. Pieczyska E.A, Gadaj S.P, Nowacki W.K. and Tobushi H, Stress relaxation during superelastic behavior of TiNi SMA, International Journal of Applied Electromagnetic & Mechanics, 23, 3-8, 2006. (Special Issue on Int. Symposium on Shape Memory Materials for Smart Systems, E-MRS Fali Meeting 2005).
  • 92. Pieczyska E.A, Gadaj S.P, Nowacki W.K. and Tobushi H., Transformation induced effects in TiNi Shape memory alloy subjected to tension, Proc. ICEM-13, 13th International Conference on Experimental Mechanics, Alexandropolis, Greece, edited by E.E. Gdoutos (electronic version), 2007.
  • 93. Pieczyska E.A., Gadaj S.P.? Nowacki W.K., Kowalczuk M, Environment friendly polymeric materials - identification of their biodegradability on base of thermomechanical coupling phenomena, J. Theor. Appl. Mech, 42, 4, 805-816, 2004.
  • 94. Pieczyska E.A., Nowacki W.K., Gadaj S.P. and Tobushi H., Superelasticity and transformation-induced effects in TiNi SMA, Proc. EMMC-10, Multi-phase and multi-component materials under dynamie loading, W.K. Nowacki and Han Zhao (Eds), Kazimierz Dolny, Poland, 253-262, 2007.
  • 95. Pieczyska E.A, Pęcherski R.B., Gadaj S.P, Nowacki W.K, Nowak Z, Matyjewski M, Expeiimental and theoretical investigations of glass fibrę reinforced composite subjected to uniaxial compression for a wide spectrum of strain rates; Arch. Mech. 58, 3,273-291, 2006.
  • 96. Pieczyska E.A, Tobushi H, Nowacki W.K, Gadaj S.P. and Sakuragi T, Thermomechanical behavior of TiNi shape memory alloy subjected to various loading conditions: influence of strain ratę and stress ratę on deformation behavior, Proc. EMMC-10, Multi-phase and multi-component materials under dynamie loading, W.K. Nowacki and Han Zhao (Eds), Kazimierz Dolny, Poland, 263-271, 2007.
  • 97. Pieczyska E.A, Tobushi H, Nowacki W.K, Gadaj S.P. and Sakuragi T, Subloop Deformation Behavior of TiNi Shape Memory Alloy under stress-controlled conditions; Proc. ATEM'07, JSME-MMD, International Conf. on Advanced Technology in Experimental Mechanics, Fukuoka, Japan (electronic version), 2007.
  • 98. Pieczyska E.A.: Thermoelastic effect in austenitic steel referred to its hardening. J. Theor. Appl. Mech., 2, 37, 349 - 368, 1999.
  • 99. Pieczyska E.A., Tobushi H., Gadaj S.P. and Nowacki W.K., Superelastic deformation behaviors based on phase transformation bands in TiNi shape memory alloy, Materials Transactions, Special Issue on Shape Memory Alloys and Their Applications, 47, 3, 670-676, 2006.
  • 100. Pieczyska E.A., Tobushi H., Nowacki W.K., Gadaj S.P. and Sakuragi T, Subloop Deformation Behavior of TiNi Shape Memory Alloy Subjected to Stress-Controlled Loadings, Materials Transactions, 48, 10 2679-2686, 2007.
  • 101. Pieczyska E.A, Nowacki W.K., Gadaj S.P., Tobushi H., Badanie nukleacji i rozwoju przemiany martenzyrycznej i odwrotnej w stopie TiNi z pamięcią kształtu, Proc. 1 Kongresu Mechaniki Polskiej, Warszawa, red. J. Kubik, W. Kurnik, W.K. Nowacki, 7 stron, (wersja elektroniczna) 2007.
  • 102. Pieczyska E.A, Nowacki W.K., Tobushi H., Hayashi S., Thermomechanical properties of shape memory polymer SMP subjected to tension and simple shear process, Proc. QIRT 2008, 9th Quantitative Infrared Thermography, Cracow, Poland, 539-548, 2008.
  • 104. Pieczyska E.A., Poliuretan z pamięcią kształtu - opis materiału, przegląd literatury, wstępne badania rozciągania oraz prostego ścinania; Przegląd Mechaniczny, IV, 38-45, 2006.
  • 104. Pieczyska E.A., Własności poznawcze i aplikacyjne polimerów z pamięcią kształtu, NIT: Nauka, Innowacje, Technika, 4-10, 5-6/2006 (12).
  • 105. Pieczyska E.A., Własności poznawcze i aplikacyjne stopów z pamięcią kształtu na przykładzie TiNi, NIT: Nauka, Innowacje, Technika, 24-30, 4-5/2005(11).
  • 106. Poilane A, Delobelle P., Lexcellent C, Hayashi S., Tobushi H., Analysis of mechanical behavior of shape memory polymer membranes by nanoindentation, builging and point membranę deflection test, Thin Solid Films, 379, 156-165, 2000.
  • 107. Raniecki B. and Tanaka K. On the thermodynamic driving force on coherent phase transformation, Int. J. Eng. Sci., 32,1945-1858, 1994.
  • 108. Raniecki B. Lexcellent C, Tanaka K., Thertnodynamic models of pseudoelastic behaviour of shape memory alloys, Arch. Mech, 44, 3, 261-284, 1992.
  • 109. Raniecki B., Dietrich L., Kowalewski Z., Socha G, Miyazaki S.5 Tanaka K., Ziółkowski A., Experimental methodology for NiTi shape memory alloy testing under complex stress state. Arch. Mech. 51, 726-744, 1999.
  • 110. Saburi T., Shape Memory Materials, Proc. Int. Symp. SMMy99, Kanazawa, Japan, 1999.
  • 111. Schaefer A., Grossman C, Eggeler G., Wagner M.? Localisation phenomena in NiTi Shape Memory Alloys- Experimental Analysis of Lliders-like Shear Bands in One- and Two-dimensional Loading Scenarios, Proc. E-MRS Warsem FallMeeting, 124, 2007.
  • 112. Shahinpoor M. and Kim K.J., łonie polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers and artificial muscles, SmartMater. Struct. 13, 1362-1388, 2004.
  • 113. Shahinpoor M. and Kim K.J., łonie polymer-metal composites: IV. Industrial and Medical Applications, Smart Mater. Struct. 14, 197-214,2005.
  • 114. Shaw J.A. and Kyriakides S., Thermomechanical aspects of NiTi, J. Mech. Phys. Solids, 43-8, 1243-1281, 1995.
  • 115. Shaw J.A. and Kyriakides S., On the nucleation and propagation of phase transformation fronts in a TiNi Alloy, Acta Mater. 45, 2, 683-700, 1997.
  • 116. Sittner R, Landa M., Lukas R, Novak V., R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals, Mech. Mater. 38, 475-492, 2005.
  • 117. Sittner R, Liu Y. and Novak V., On the origin of Liiders like deformation of TiNi shape memory alloys, J. Mech. Physics, Solids, 53-8, 1719-1746, 2005.
  • 118. Slutsker J. and Roytburd A.L., Modeling of superelastic adaptive composites, Q.R Sun (editor), IUTAM Symposium on Mechanics of Martensitic PhaseTransformation in Solids, 147-154, 2002.
  • 119. Stróż D., Oddziaływanie odkształceń sieciowych na przebieg przemiany martenzytycznej w stopach NiTi, Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2005.
  • 120. Stupkiewicz S., Micromechanics of contact and interphase layer, Prace IPPT 2/2005, 2005.
  • 121. un Q.P., Phase Transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion - from localization to homogeneous deformation, Int. Journal ofSolids and Structures, 39, 3797 - 3809, 2002.
  • 122. Szczepiński W., Efekt termomechaniczny w pomiarach naprężeń i odkształceń. Materiały seminarium Badania mechanicznych właściwości materiałów i konstrukcji, Zakopano, 1998.
  • 123. Tanaka K., Kobayashi S. and Sato Y, Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys, Int. J. Plasticity, 2, 59-72, 1986.
  • 124. Tanaka K., A thermomechanical sketch of shape memory effect: one-dimensiona! tensile behavior, Res Mechanica, 18, 251-263, 1986.
  • 125. Tanaka K., Kitamura K., Miyazaki S., Shape memory alloy preparation for multiaxial tests and identification of fundamental alloy performance, Arek Mech, 51, 6, 785-803, 1999.
  • 126. Taylor G.I. and Quinney H., The latent energy remaining in a metal after cold working, Proc. Roy Soc. London, 143A, 307- 326, 1934.
  • 127. Thomson W., (Lord Kelvin), Quart. J. Pure and Appl. Math, 1, 57, Math. and Phys. Papers, Cambridge, v.l, 291, 1882.
  • 128. Tobushi H., Endo M., Ikawa T. and Shimada D., Pseudoviscoelastic behavior of TiNi shape memory alloys under stress-controlled subloop loadings, Arch. Mech., 55, 5-6, 519-530, 2003.
  • 129. Tobushi H., Hachisuka T, Hashimoto T, Yamada S, Cyclic Deformation and Fatigue of a TiNi Shape-Memory Alloy Wire Subjected to Rotating Bending, ASME Trans., 64, 120, 64-70, 1998.
  • 130. Tobushi H., Hara H. and Yamada E., Thermomechanical propeities of shape memory polymer of polyurethane series and their applications, Proceedings of the ThirdlCIM/ECSSM "96, Lyon 1996.
  • 131. Tobushi H., Hayashi S., Hoshio K., Makino Y and Niwa N., Bending Actuation Characteristics of Shape Memory Composites, Proc. 6th Int. Conf. IntelligentMaterials and System ICIM705, Tokyo, 159-162, 2005.
  • 132. Tobushi H., Hayashi S., Kojami S., Mechanical propeities of shape memory polymer of polyurethane series and their applications (Basic characteristics of stress-strain temperaturę relationship). JSMEInt. J, Ser. I., 35-39, 1992.
  • 133. Tobushi H., Hayashi, S. Hoshio K., Makino Y and Niwa N., Thermomechanical Propeities of Shape Memory Composites, The 13th JSME Materials and Processing Conference, Seattle (electronic version), 2005.
  • 134. Tobushi H., Ikai A., Yamada S., Tanaka K. and Lexcellent C, Thermomechanical Properties of TiNi Shape Memory Alloy, Journal de Physiąue W, Vol. Cl, 6, 385-393, 1996.
  • 135. Tobushi H., Lin P.H., Ikai A. and Yamada S., Rotating-Bending Fatigue Test of TiNi Shape Memory Alloy Wire, Trans. Jap. Soc. Mech. Eng., Series A, Vol. 61, No. 691,2355-2361, 1995.
  • 136. Tobushi H., Matsui R., Hayashi S. and Shimada D., The influence of shape-holding conditions on shape recovery of polyurethane-shape memory polymer foams, SmartMater. Struct. 13, 881 - 887, 2004.
  • 137. Tobushi H.? Matsui R., Hayashi S. and Shimada D., Thermomechanical properties of polyurethane-shape memory polymer foams, Proc. ofPlasticity 05: The Eleventh Int. Symposium on Plasticity and its Current Applications, ed. by A. Khan, A. Khoei, 559 - 561, 2005.
  • 138. Tobushi H., Matsui R., Takada T. and Hayashi S., Shape Fixity and Shape Recovery of Shape memory Polymer and their Applications, Abstracts Book and CD-ROMProceedings o/21st ICTAM04, Warsaw, 13, 2004.
  • 139. Tobushi H., Nakahara T, Shimeno Y., Hashimoto T, Low-Cycle Fatigue of TiNi Shape Memory Alloy and Formulation of Fatigue Life, Trans. ASME, J.Eng. Mater Tech, 122, 186-191, 2000.
  • 140. Tobushi H., Okumura K., Endo M., Hayashi S., Shape Fixity and Shape Recovery of Polyurethane-Shape Memory Polymer Foam, Mat. Sc. Res. Int. Sp. Tech. Publ.-2, 351-354, 2001.
  • 141. Tobushi H., Okumura K., Endo M., Hayashi S., Strain Fixity and Recovery of Polyurethane-Shape Memory Polymer Foam, Trans, ofthe Mat. Res. Society of Japan 26 -1,351-354, 2001.
  • 142. Tobushi H., Okumura K., Endo M., Hayashi S., Thermomechanical properties of polyurethane-shape memory polymer, IUTAM Symposium on Mechanics of Martensitic Transformation in Solids, Solids Mechanics and Its Applications, 101, ed. by Q. P. Sun, Kluver, 2002.
  • 143. Tobushi H., Okumura K., Endo M., Hayashi S., Thermomechanical properties of polyurethane-shape memory polymer foam, J. Intell. Mater. Syst. Struci., 12, 2001.
  • 144. Tobushi H., Okumura K., Hayashi S., Ito N., Thermomechanical constitutive model of shape memory polymer, Mechanics of Materials, 33, 545-554, 2001.
  • 145. Tobushi H., Okumura K., Nakagawa K. and Takata K., Fatigue Properties of TiNi Shape Memory Alloy, Trans. Mat. Res. Soc. Japan, 26, 1, 347-350, 2001.
  • 146. Tobushi H., Pieczyska E.A, Ejiri Y and Sakuragi T, Thermomechanical properties of shape memory alloy and shape memory polymer, (Keynote lecture), Proc. EMMC-10, Multi-phase and multi-component materials under dynamie loading, W.K. Nowacki and Han Zhao (eds), Kazimierz Dolny, Roland, 53-62,2007.
  • 147. Tobushi H., Shimada D., Hayashi S. and Endo M., Shape Fixity and Shape Recovery of Polyurethane Shape-Memory Polymer Foams, Proc. Instn Mech Engrs, Vol. 217, Part L: Mat. Design and Applic., 2003.
  • 148. Tobushi H., Shimada D., Matsui R. and Hayashi S., Thermomechanical properties of polyurethane-shape memory polymer foam, Trans. oftheMat. Res. Society ofJapan, 28-3, 643 - 646, 2003.
  • 149. Tobushi H., Takata K, Shimeno Y., Nowacki W.K., Gadaj S.P., Influence of strain ratę pseudoelastic behaviour in TiNi shape memory alloy, Proc. Instn. Mech Engrs, 312, Part L, 93-102, 1999.
  • 150. Tobushi H., Tanaka K., Horikawa H., Matsumoto M., Shape Memory Materials and their Applications, Corona Pub. Co., LTD, Tokyo, 2004 (in Japanese).
  • 151. Tobushi Hisaaki, Pieczyska E.A., Ejiri Y. and Sakuragi T., Thermomechanical Properties of Shape-Memory Alloy and Polymer and their Composite, Mechanics ofAdvanced Materials and Structures, (w druku).
  • 152. Toessmeier PA., Shape Memory Polymers Reshape Product Design, Plastic Engineering. www.4spe.org, 2005.
  • 153. Tourabi A., Wack B., Guelin P, Favier D., Pegon P, Nowacki W.K., Remarks on an experimental plain shear test and on an anisotropic elastic-plastic theory, Technical Report, SMIRT, Stuttgart, Elsevier Sci. Publ., 1993.
  • 154. Tsai H. and Fan X., Elastic defonnation in shape memory alloy fiber reinforced composites, Q.P. Sun (ed), Proc. IUTAM Symposium on Mechanics ofMartensitic Phase Transformation in Solids, 139-146, 2002.
  • 155. Wolons D., Gandhi F. and Malovhr B., Experimental investigation of the pseudoelastic hysteresis damping characteristics of shape memory alloy wires, J. of IntelligentMateriał Systems and Structures, 9, 2,116-126, 1998.
  • 156. Ziółkowski A. Pseudosprężystość stopów z pamięcią kształtu. Badania doświadczalne i opis teoretyczny, Prace IPPT, 6, 2006.
  • 157. Ziółkowski A., Zagadnienia pseudosprężystości materiałów z pamięcią kształtu: Praca doktorska, Warszawa, 1995, 148 stron, promotor B. Raniecki.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB4-0049-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.