PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamical systems with internal degrees of freedom in non-Euclidean speces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary concept of Newton mechanics is that of the material point moving in three-dimensional Euclidean space. A good deal of the theory depends only on the affine sector of geometry. The metric structure becomes essential when constructing particular functional models of forces; the concepts of energy, work, and power (time rate of work) also depend in an essential way on the metric tensor. The Galilei relativity principle implies that,l as a matter of vactl, it is not three-dimencional Euclidean space but rather four-dimensional Galilean space-time that is a proper arena of mechanics. This space-time has relatively complicated structure, does not carry any natural four-dimensional metric tensor and fails to be the Cartesian product of space and time. There exists the absolute time, but the absolute space does not. In the sequel we concentrate onf the other kind of problems, so the analysis of the subtle space-time aspects will be almost absent in our treatment. Newton theory becomes essentially realistic and viable when multiparticle systems are analyzed. It is just there where metrical concepts become almost unavoidable, because it is practically impossible to construct any realistic model of interparticle forces without the explicit use of the metric tensor. Extended bodies are described as discrete or continuous systems of material points. Their motion consists of that of the center of mass, i.e., translational motion and the relative motion of constituents with respect to the center of mass. The total configuration space may be identified with the Cartesian product of the physical space (translational motion) and the configuration space of relative motion. In many physical problems the structure of mutual interactions leads to certain hierarchy of degrees of freedom of the relative motion; in particular, some constraints may appear. The effective configuration space becomes then the Cartesian product ot the physical space and some manifold of additional degrees of freedom. There are situations when this auxiliary manifold and the corresponding dynamics are postlulated as something rather primary then derived from the multiparticle models. Usually the guiding hints are based on some symmetry principles. In this way the concept of internal degrees of freedom replaces that of relative motion. Sometimes it is a merely convenient procedure, but one can also admit something like essentially internal degrees of freedom not derivable from any multiparticle mode. After all, the very concept of the material point is an abstraction of a small piece of matter.
Rocznik
Tom
Strony
1--121
Opis fizyczny
Bibliogr. 54 poz.
Bibliografia
  • [1] R. Abraham and J. E. Marsden, Foundations of Mechanics (second ed.), The Benjamin-Cummings Publishing Company, London-Amsterdam-Sydney-Tokyo, 1978.
  • [2] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer Grad-uate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1978.
  • [3] E. Binz, Global Differential Geometrie Methods in Elasticity and Hydrody-namics, in: Differential Geometry, Group Representations and Quantiza-tion, Lecture Notes in Physics, vol. 379, edited by J. D. Hennig, W. Liicke, and J. Tolar, Springer-Verlag, Berlin-Heidelberg, 1991.
  • [4] O. I. Bogoyavlensky, Methods of Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics, Springer, Berlin-Heidelberg-New York, 1985.
  • [5] A. Burov and D. P. Chevallier, On the Variational Pńnciple of Poincare, the Poincare-Chetayev Eąuations and the Dynamics ofAffinely Deformable Bodies, Cahier de C.E.R.M.I.C.S. 14, Mai 1996.
  • [6] A. Burov and S. Ya. Stepanov, On Geometry of Masses in Dynamics of Deformable Bodies, in: Problems of Investigation on Stability and Stabi-lization of Motion, Computing Centrę of the Russian Academy of Sciences, Moscow, 1995 (in Russian).
  • [7] G. Capriz, Continua with Micro structure, Springer Tracts in Natural Philosophy, vol. 35, Springer-Verlag, New York-Berlin-Heidelberg-Paris-Tokyo, 1989.
  • [8] G. Capriz and P. M. Mariano, Symmetries and Hamiltonian Formalism for Complex Materials, Journal of Elasticity 72 (2003), 57-70.
  • [9] D. P. Chevallier, On the Foundations of Ordinary and Generalized Rigid Body Dynamics and the Principle of Objectiuity, Arch. Mech. 56 (2004), no. 4, 313-353.
  • [10] A. C. Eringen, Nonlinear Theory of Continuous Media, McGraw-Hill Book Company, New York, 1962.
  • [11] A. C. Eringen, Mechanics of Micromorphic Continua, in: Proceedings of the IUTAM Symposium on Mechanics of Generalized Continua, Freuden-stadt and Stuttgart, 1967, E. Króner (ed.), voł. 18, Springer, Berlin-Heidelberg-New York, 1968, 18-33.
  • [12] H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Mass, 1950.
  • [13] B. Golubowska, Motion of Test Rigid Bodies in Riemannian Spaces, Rep. on Math. Phys. 48 (2001), no. 1/2, 95-102.
  • [14] B. Golubowska, Models of Intemal Degrees of Freedom Based on Classical Groups and Their Homogeneous Spaces, Rep. on Math. Phys. 49 (2002), no. 2/3, 193-201.
  • [15] B. Golubowska, Affine Models of Intemal Degrees of Freedom and Their Action-Angle Description, Rep. on Math. Phys. 51 (2003), no. 2/3, 205-214.
  • [16] B. Golubowska, Infinitesimal Affinely-Rigid Bodies in Riemann Spaces, in: Proceedings of Institute of Mathematics of NAS of Ukrainę, eds: A. G. Nikitin, V. M. Boyko, R. O. Popovych, and I. A. Yehorchenko, 50, Part 2, Institute of Mathematics, Kyiv, 2004, 774-779.
  • [17] B. Golubowska, Action-Angle Analysis of Some Geometrie Models of In-ternal Degrees of Freedom, J. of Nonlinear Math. Phys. 11 (2004), Supple-ment, 138-144.
  • [18] B. Golubowska, An Affinely-Rigid Body in Manifolds and Spaces with the Constant Curvature, PhD thesis, Warsaw, 2006.
  • [19] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, In-terscience Publishers, New York, 1963.
  • [20] V. V. Kozlov and A. O. Harin, Kepler's Problem in Constant Curuature Spaces, Cel. Mech. Dyn. Astronomy 54 (1992), 393-399.
  • [21] P. M. Mariano, Configuration Forces in Continua with Micro structure, Z. angew. Math. Phys. 51 (2000), 752-791.
  • [22] J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Springer, New York, 1994.
  • [23] J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry. A Basic Ezposition of Classical Mechanical Systems (second ed.), Springer, New York, 1999.
  • [24] A. Martens, Dynamics of Holonomically Constrained Affinely-Rigid Body, Rep. on Math. Phys. 49 (2002), no. 2/3, 295-303.
  • [25] A. Martens, Quantization of an Affinely-Rigid Body with Constraints, Rep. on Math. Phys. 51 (2003), no. 2/3, 287-295.
  • [26] A. Martens, Hamiltonian Dynamics of Planar Affinely-Rigid Body, J. of Nonlinear Math. Phys. 11 (2004), Supplement, 145-150.
  • [27] A. Martens, Quantization of the Planar Affinely-Rigid Body, J. of Nonlinear Math. Phys. 11 (2004), Supplement, 151-156.
  • [28] E. E. Rożko, Dynamics of Affinely-Rigid Bodies with Degenerate Dimen-sion, Rep. on Math. Phys. 56 (2005), no. 3, 311-332.
  • [29] M. B. Rubin, On the Theory of a Cosserat Point and Its Application to the Numerical Solution of Continuum Problems, ASME J. Appl. Mech. 52 (1985), 368-372.
  • [30] M. B. Rubin, Free Vibration of a Rectangular Parallelepiped Using the Theory of a Cosserat Point, ASME J. Appl. Mech. 53 (1986), 45-50.
  • [31] J. J. Sławianowski, Analytical Mechanics of Homogeneous Deformations, Prace IPPT — IFTR Reports 8, 1973 (in Polish).
  • [32] J. J. Sławianowski, Analytical Mechanics of Finite Homogeneous Strains, Arch. of Mech. 26 (1974), no. 4, 569-587.
  • [33] J. J. Sławianowski, The Mechanics of an Affinely-Rigid Body, Int. J. of Theor. Phys. 12 (1975), no. 4, 271-296.
  • [34] J. J. Sławianowski, Newtonian Dynamics of Homogeneous Strains, Arch. of Mech. 27 (1975), no. 1, 93-102.
  • [35] J. J. Sławianowski, Bertrand Systems on 50(3, R) and 5/7(2), Bulletin de 1'Academie Polonaise des Sciences, Serie des sciences physiąues et astro-nomiąues 28 (1980), no. 2, 83-94.
  • [36] J. J. Sławianowski, The Mechanics of the Homogeneously-Deformable Body. Dynamical Models with High Symmetries, Z. angew. Math. Mech. 62 (1982), 229-240.
  • [37] J. J. Sławianowski, Analytical Mechanics of Deformable Bodies, PWN — Polish Scientific Publishers, Warszawa-Poznań, 1982 (in Polish).
  • [38] J. J. Sławianowski, An Affinely-Rigid Body and Hamiltonian Systems on GL(n,R), Rep. on Math. Phys. 26 (1988), no. 1, 73-119.
  • [39] J. J. Sławianowski, Nonholonomic Variational Problems and Heuristics of Control Forces, J. of Theor. and Applied Mech. 29 (1991), no. 3-4, 661-670.
  • [40] J. J. Sławianowski, Bertrand Systems on Spaces of Constant Sectional Cur-vature. The Action-Angle Analysis, Rep. on Math. Phys. 46 (2000), no. 3, 429-460.
  • [41] J. J. Sławianowski, Group-Theoretic Approach to Internal and Collective Degrees of Freedom in Mechanics and Field Theory, Technische Mechanik 22 (2002), no. 1, 8-13.
  • [42] J. J. Sławianowski, Quantum and Classical Models Based on GL(n,R)-Symmetry, in: Proceedings of the Second International Symposium on Quantum Theory and Symmetries, Kraków, Poland, July 18-21, 2001, eds: E. Kapuścik and A. Horzela, World Scientific, New Jersey-London-Singapore-Hong Kong, 2002, 582-588.
  • [43] J. J. Sławianowski, Linear Frames in Manifolds, Riemannian Structures and Description of Internal Degrees of Freedom, Rep. on Math. Phys. 51 (2003), no. 2/3, 345-369.
  • [44] J. J. Sławianowski, Classical and Quantum Collectwe Dynamics of Deformable Objects. Symmetry and Integrability Problems, in: Proceedings of the Fifth International Conference on Geometry, Integrability and Quan-tization, June 5-12, 2003, Varna, Bułgaria, eds: Ivailo M. Mladenov and Allen C. Hirshfeld, SOFTEX, Sofia, 2004, 81-108.
  • [45] J. J. Sławianowski, Geodetic Systems on Linear and Affine Groups. Clas-sics and Quantization, J. of Nonlinear Math. Phys. 11 (2004), Supplement, 130-137.
  • [46] J. J. Sławianowski and V. Kovalchuk, Invariant Geodetic Problems on the Affine Group and Rela Hamiltonian Systems, Rep. on Math. Phys. 51 (2003), no. 2/3, 371-379.
  • [47] J. J. Sławianowski and V. Kovalchuk, Invariant Geodetic Problems on the Projectwe Group Pr(n, R), Proceedings of Institute of Mathematics of NAS of Ukraine, eds: A. G. Nikitin, V.M. Boyko, R.O. Popovych, and I.A. Yehorchenko, 50, Part 2, Kyiv, institute of Mathematics, 2004, 955-960.
  • [48] J. J. Sławianowski and V. Kovalchuk, Classical and Quatized Affine Physics. A Step Towards It, J. of Nonlinear Math. Phys. 11 (2004), Supplement, 157-166.
  • [49] J. J. Sławianowski, V. Kovalchuk, A. Sławinowska, B. Gołubowska, A. Martens, E.E. Rożko, and Z. J. Zawistowski, Invariant Geodetic Systems on Lie Groups and Affine Models of Internal and Collective Degrees of Freedom, Prace IPPT - IFTR Reports 7, 2004.
  • [50] J. J. Sławianowski, V. Kovalchuk, A. Gławinowska, B. Gołubowska, A. Martens, E. E. Rożko, and Z. J. Zawistowski, Affine Symmetry in Mechanics of Collective and Internal Modes. Part I. Classical Models, Rep. on Math. Phys 6=54 (2004), no. 3, 373-427.
  • [51] J. J. Sławianowski, V. Kovalchuk, A. Gławinowska, B. Gołubowska, A. Martens, E. E. Rożko, and Z. J. Zawistowski, Affine Symmetry in Mechanics of Collective and Internal Modes. Part II. Quaantum Models, Rep. on Math. Phys. 55 (2005), no. 1, 1-45.
  • [52] E. Sousa Dias, A Geometric Hamiltonian Approach to the Affine Rigid Body, in: Dynamics, Bifurcation and Symmetry. New Trends and New Tools, P. Chossat (ed.), NATO ASI Series C, vol. 437, Kluwer Academic Publishers, Netherlands, 1994, 291-299.
  • [53] S. Sternberg, Lecture on Differential Geometry, Prentice-Hall, New York, 1964.
  • [54] J. L. Synge, Classical Dynamics, Springer-Verlag, Brerlin-Göttingen-Heidelberg, 1960
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB4-0033-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.