PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dualność w optymalizacji dyskretnej konstrukcji

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Tekst rozprawy habilitacyjnej dr. inż. Jacka Bauera.
Rocznik
Tom
Strony
1--58
Opis fizyczny
Bibliogr. 183 poz., rys.
Twórcy
autor
  • Pracownia Metod Numerycznych Niezawodności i Optymalizacji Zakład Metod Komputerowych
Bibliografia
  • 1953
  • a) N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chemical Physics, 21, 1087-1092.
  • b) G.B. Dantzing, Discrete - variable extremum problems, Opcrat. Res., 5, 2, 266-277.
  • 1955
  • a) H. G. Hopkins and W. Prager, Limits of economy of material in plates, J. Appl. Mech., 22, 372-374.
  • 1957
  • a) R. Bellman, Dynamic Programming, Princeton University Press, Princeton, N.J.
  • 1958
  • a) R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bn Amer. Soc. Math., 64, 275-278.
  • 1960
  • a) A. H. Land and A. G. Doig, An Automatic Method of Solving Discrete Programming Problems, Econometrica, 28, 497-520
  • 1965
  • a) S. E. Dreyfus, Dynamic Programming and the Calculus of Variations, Academic Press, Inc. New York.
  • b) S. Reiter and G. Sherman, Discrete optimizing, J. Soc. Indust. Appl. Math., 13, 864-889.
  • 1968
  • a) D. A. Maciulevicius, Sijntez optimalnych szarnirno - sterżnievych konstrukcij po zadanomu sortamentu materiału (czasticzno cieločislennaja zadača), Litov. Mech. Sbornik, 2, 5-15.
  • b) A. R. Toakley, Optimum design using available sections, Proc. ASCE J. Struct. Div., 94, 1219-1241.
  • c) A. C. Palmer, Optimal Structure Design by Dynamic Programming, J. Struct. Div., ASCE, vol.94, No ST 8, 1887-1906.
  • 1969
  • a) A.A. Korbut and J.J. Finkelsztejn, Discrete Programming, (in Russian), Nauka, Moskva.
  • b) C. Y. Sheu and W. Prager, Optimal plastic design of circular and annular sandwich plates with piecewise constant cross section, J. Mech. Phys. Solids, 17, 11-16.
  • 1970
  • a) Kim Hen Hij, T. S. Kim, Ispolzovanije dinamičeskogo programirovanija dlja rasčeta mnogoproletnych ferm najmnieszego objema, Stroitelnaja Mechanica i Rascet Sooruženij, No 4(70), 18-20.
  • 1971
  • a) K. F. Reinschmidt, Discrete structural optimization, Proc. ASCE, J. Struct. Div., 97, 133-156.
  • b) H. Greenberg, Integer Programming, Academic Press, New York.
  • c) A. M. Geoffrion, Duality in nonlinear programming : a simplified applications - oriented development, SIAM Review, 13, 1, 1-37.
  • 1973
  • a) A. Celia, K. Soosaar, Discrete variables in structural optimization In: R. M. Gallagher and 0. C. Zienkiewicz, eds., Optimum Structural Design. Theory and Applications, Wiley, 201-222.
  • 1974
  • a) A.A. Korbut, J.J. Finkelsztejn, Programowanie dyskretne (tłum. z j. ros.), PWN, Warszawa.
  • 1975
  • a) M. L. Fischer, W. D. Northup and J. F. Shapiro, Using duality to solve discrete optimization problem: theory and computational experience, In: M. L. Baliński and Philip Wolfe eds., Math. Programming Study, Vol. 3 - Nondifferentiable Optimization, North-Holland, 56-94.
  • b) Z. R. Leśniak, Some practical applications of structural optimization. In: A. Sawczuk and Z. Mróz, eds., Optimization in Structural Design, Springer, Berlin, 563-569.
  • c) A. Zavelani, G. Maier and L. Binda, Shape optimization of plastic - structures by zero - one programming, In: A. Sawczuk and Z. Mróz, eds. Optimization in Structural Design, Springer, Berlin, 541-554.
  • 1976
  • a) Cz. Eimer and J. Mączyński, On optimal shell prestressing, J. Struct. Mech., 4, 298-305.
  • 1978
  • a) Z. K. Leśniak, Z. Grodzki, B. Jakubowska, OSY - system optymalizacji hal stalowych Arkady, Warszawa.
  • b) A. Garstecki, A. Gawęcki and M. Gawęcki, Optymalizacja systemu lekkich hal stalowych, Prace IPPT PAN, (IFTR Reports), Nr 6.
  • c) R. G. Kelahan and J. L. Gaddy, Application of the adaptive random search to discrete and mixed integer optimization, Int. J. Num. Meth. in Engng., 12, 289-298.
  • d) S. S. Rao, Optimization. Theory and applications, Chapter 10-Integer Programming Wiley, New Delhi.
  • e) R.S. Garfinkel, G.L. Nemhauser, Programowanie całkowitoliczbowe (tłum. z j. ang.) PWN, Warszawa.
  • f) B.M. Kagunowicz, Diskretnaja optimizacja tepłowych setiej (ros.), Nauka Nowosibirsk
  • g) D.O. Lamblin, c. Cinquini, G. Guerlement, Application of linear programming to the optimal plastic design of circular plates subjected to technological constraints, Comp. Meth. Appl. Mech. Engng., 13, 223-243.
  • 1979
  • a) J. S. Shapiro, A survey of Lagrange’an techniques for discrete optimization, Annals of Discrete Mathematics. North-Holland, 5, 113-138.
  • b) E. J. Haug and J. S. Arora, Applied Optimal Design, Mechanical and Structural . Systems, Wiley, New York.
  • c) A. Glankwahmdee, J. Liebman and G. Hogg, Unconstrained discrete nonlinear programming, Engineering Optimization, 4, 95-107.
  • 1980
  • a) L. A Schmit and C. Fleury, Discrete-continuous variable structural synthesis using dual methods, AIAA J., 18, 1515-1524.
  • b) J. Farkas and L. Szabó, Optimum design of beams and frames of welded I-sections by means of backtrack programming, Acta Technica Academiae Scient. Hung., Tom. 91, 121-135.
  • c) L.B. Kovács, Combinatorial Methods of Discrete Programming, Académiai Kiadó, Budapest,
  • d) J. Karczewski, W. Paczkowski, Optymalizacja kratownicy przestrzennej metodą pełnego przeglądu wariantów, Inżynieria i Budownictwo, 37, 3, 91-95.
  • 1981
  • a) J. Bauer, W. Gutkowski, Z. Iwanow, Metody numeryczne w optymalizacji dyskretnej Mechanika i Komputer, Tom 4, 121-139, Warszawa.
  • b) D. B. Fox and J. S. Liebman, A discrete nonlinear simplex method for optimized engineering design, Engineering Optimization, 5, 129-149.
  • c) J. S. Liebman, Narbey Khachaturian and Visarn Chanarana, Discrete structural optimization, Proc. ASCE, J. Struct. Div., 107, 2177-2197.
  • d) J. Bauer, W. Gutkowski and Z. Iwanow, A discrete method for lattice structures optimization, Engineering Optimization, 5, 121-128.
  • e) Z. Iwanow, The method of enumeration according to the increasing value of the objective function in the optimization of bar structures, Bull, de I’Acad. Polon. des Sc. Ser. des Sc. Techn., XXIX, 9-14.
  • 1982
  • a) D. F. Yates, A. B. Templeman and T. B. Boffey, The complexity of procedures for determining minimum weight trusses with discrete member sizes, Int. J. Solids Structures, 18, 487-495.
  • b) L. Gawkowska, Optymalizacja przekryć strukturalnych, Praca doktorska, Politechnika Szczecińska.
  • c) L. Gawkowska, Optymalizacja przekryć strukturalnych o ortogonalnej siatce prętów, Prace IPPT Nr 8.
  • 1983
  • a) D. F. Yates, T. B. Boffey and A. B. Templeman, A heuristic method for the design of minimum weight trusses using discrete member sizes, Comp. Meth. Appl. Mech. and Engng., 37, 37-55.
  • b) Hsichun M. Hua, Optimization for structures of discrete - size elements, Computers & Structures, 17, 327-333.
  • c) S. Kirkpatrick, C. D. Gelatt, Jr and M. P. Vecchi, Optimization by simulated annealing, Science, 220, 671-680.
  • d) C. Fleury and V. Braibant, Structural optimization involving discrete design variables, In: H. Eschenauer, N. Olhoff, eds., Optimization Methods in Structural Design, Proc. of Euromech-Colloquium 164, Siegen, Oct. 1982, Bibliographisches Institut, Mannheim, 70-77.
  • e) A. B. Templeman and D.F. Yates, A linear programming approach to the discrete optimum design of trusses, In: H. Eschenauer, N. Olhoff, eds., Optimization Methods in Structural Design, Proc. of Euromech-Colloquium 164, Siegen, Oct. 1982, Bibliographisches Institut, Mannheim, 133-139.
  • f) A. B. Templeman, D. F. Yates, A segmental method for the discrete optimum design of structures, Eng. Optimization, 6, 3, 145-155.
  • g) B.T. Poljak, Vviedienije v optimizacju, Nauka, Moskva.
  • 1984
  • a) J. Bauer, W. Gutkowski and Z. Iwanow, Optimum design of regular space structures, In: H. Nooshin, ed., Third International Conference on Space Structures, Elesevier London, 672-676.
  • b) M. Libura, Dualność w programowaniu całkowitoliczbowym i jej zastosowanie w analizie pooptymalizacyjnej oraz algorytmach przybliżonych, Arch. Automatyki i Telemechaniki, XXIX, 1-2, 75-92.
  • 1985
  • a) R. T. Haftka and H. M. Adelman, Selection of actuator locations for static shape control of large space structures by heuristic integer programming, Computers & Structurers, 20, 575-582.
  • b) D. 0. Lamblin, G. Guerlement and M. A. Save, Solutions de dimensionnement plastique de volume minimal de plaques circulaires pleines et sandwiches en presence de constraintes technologiques, J. de Mec., teor. et appl., 4, 4. 433-461.
  • c) L. Gawkowska, Dobór optymalnych przekrojów prętów w strefach sztywnosci przekryć strukturalnych, Arch. Inż. Ląd., 31, 1-2, 97-111.
  • d) I.W. Sergienko, Matematičeskije modeli i metody resenija zadač diskretnoj optymizacji, Naukova Dumka, Kiev.
  • 1986
  • a) D. E. Grierson and W. H. Lee, Optimal synthesis of frameworks under elastic and plastic performance constraints using discrete sections, J. Struct. Mech., 14, 401-420.
  • b) W. Gutkowski, J. Bauer and Z. Iwanow, Minimum weight design of space frames from a catalogue, In: K. Hekied., Shells, Membranes and Space Frames Proc IASS Symposium, Elsevier, Amsterdam, Vol. 3, 229-236.
  • c) A. T. Janczura and J. Sieczkowski, Komputerowy program wspomagający optymalizację konstrukcji ramowych, Inż. i Budownictwo, No. 4-5, 139-142.
  • d) A. Sepulveda and J. H. Cassis, An efficient algorithm for the optimum design of trusses with discrete variables, Int. J. Num. Meth. Engng., 23, 1111-1130.
  • e) R. P. Grimaldi, Discrete and Combinatorial Mathematics, Addison - Wesley Publishing Company
  • f) P. Berkowski, J. Boroń, Synteza wybranych konstrukcji prętowych metodą programowania dyskretnego "backtrack”, Inżynieria i Budownictwo, 6, 204-208.
  • g) S. Walukiewicz, Programowanie dyskretne, PWN, Warszawa.
  • h) D.E. Goldberg and M.P. Samanti, Engineering optimization via genetic algorithm, Proc. of the Ninth Conference on Electronic Computation, 471-482.
  • 1987
  • a) L. Gawkowska, A method for the optimization of space trusses, Bulletin of the IASS, XXVIII-3, 95, 59-63.
  • b) J. Bauer, Optymalizacja konstrukcji z uwzględnieniem dyskretnego charakteru zmiennych decyzyjnych, VIII Konf. Metody komputerowe w mechanice konstrukcji, Jadwisin, 26-30 Maja 1987, Warszawa, t. I, 27-34.
  • c) M. Pyrz, Optymalizacja dyskretna regularnych konstrukcji prętowych przy uwzględnieniu warunków utraty stateczności, Rozprawy Inżynierskie (Eng. Trans.), 35, 3, 437-494.
  • 1988
  • a) U. T. Ringertz, Discrete-continuous structural optimization, In: G.I. N. Rozvany, B.l. Karihaloo eds., Structural Optimization, Kluwer, 257-264.
  • b) H.M. Amir and T. Hasegawa, Nonlinear discrete structural optimization, Structural Eng. / Earthquake Eng., 5, 39s-49s.
  • c) A. B. Templeman, Discrete optimum structural design, Computers k Structures, 30, 511-518.
  • d) M. Week and G.Kolsch, Optimization of machine tools a mixed - discrete - continuous problem, In: H.A. Eshenauer, G. Thierauf eds., Discretization Methods and Structural Optimization - Procedures and Applications, GAMM Seminar, Oct. 5-7, 1988, Lect. Notes in Eng. 42, Springer, 351-359.
  • e) D.K. Shin, Z. Gurdal and O. H. Griffin, Jr. A penalty approach for nonlinear optimization with discrete design variables, In: H. Eschenauer, G. Thierauf eds., Discretization Methods and Structural Optimization - Procedures and Applications, Springer, 326-334.
  • f) G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, Wiley, New York.
  • g) J. Błażewicz, Złożoność obliczeniowa problemów kombinatorycznych, WNT, Warszawa.
  • h) U. T. Ringertz, On methods for discrete structural optimization, Engineering Optimization, 13, 47-64.
  • 1989
  • a) I. N. Kalinin, Diskretnoja optimizacja prostrastviennoj stierżnievoj fermiennoj konstrukcji, Stroit. Mech. i Rasczet Soor., No. 3 (183), 1-5.
  • b) H.M. Amir and T. Hasegawa, Nonlinear mixed-discrete structural optimization, J. Struct. Engng., 115, 626-646.
  • c) H.M. Amir, Unconstrained nonlinear optimization of structure and structural geometry, Phd Thesis, Kyoto University, Kyoto, Japan.
  • d) P. Hajela and C. J. Shih, Optimal design of laminated composites using a modified mixed integer and discrete programming algorithm, Computers Structures, 32, 213-221.
  • e) G.R. Olsen and G.N. Vanderplaats, Method for nonlinear optimization with discrete design variables, AIAA J. 27, 1584-1589.
  • f) P. K. Eswaran, A. Rawindran and H. Moskowitz, Algorithms for nonlinear integer bicriterion problems, JOTA, 63. 261-279.
  • g) R. Ge and Ch. Huang, A continuous approach to nonlinear integer programming, Appl. Math, and Comput., 34, 39-60.
  • h) D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learing, Addison - Wesley, Reading.
  • 1990
  • a) Ö. Jonsson and T. Larsson, Lagrange’an relaxation and subgradient optimization applied to optimal design with discrete sizing, Engineering Optimization, 16, 221-233.
  • b) D. K. Shin, Z. Gurdal and 0. H. Griffin, jr. A penalty approach for nonlinear optimization with discrete design variables, Engineering Optimization, 16, 29-42.
  • c) Ch.-K. Choi and H.-G. Kwak, Optimum RC member design with predetermined discrete sections, J. Struct. Engng., 116, 2634-2655.
  • d) K.-Y. Yuan, Ch.-Ch. Liang and Y.-Ch. Ma, The estimation of the accuracy and efficiency of the backtrack programming method for discrete-variable structural optimization problems, Computers k Structures, 36, 211-222.
  • e) Z. Iwanow, An algorithm for finding an ordered sequence of values of a discrete linear function, Control and Cybernetics, 19, 129-154.
  • f) M. Pyrz, Discrete optimization of geometrically nonlinear truss structures under stability constraints, Structural Optimization, 2, 125-131.
  • g) M. Pyrz, Discrete optimization of trusses with stability constraints, Engineering Optimization, 16, 79-89.
  • h) M. Bremicker, P. V. Papalambros and H. T. Loh, Solution of mixed - discrete structural optimization problems with a new sequential linearization algorithm, Computers &; Structures, 37, 451-461.
  • i) M. Pyrz, Optymalizacja dyskretna konstrukcji prętowych przy uwzględnieniu warunków utraty stateczności, Prace IPPT, Nr 35.
  • 1991
  • a) W. Marks and W. Trochymiak, The selection of a system of prestressing tendons in hyperstatic beams as problem of linear integer programming, Structural Optimization, 3, 59-67.
  • b) R. J. Balling, Optimal steel frame design by simulated annealing, J. Struct. Engng., ASCE, 1780-1795.
  • c) C. N. Vanderplaats and P. B. Thanedar, A survey of discrete variable optimization for structural design, In: 0. Ural, T. L. Wang eds., Proc. of the tenth ASCE Conference on Electronic Computation, Indianopolis, Indiana ASCE, 173-180.
  • d) S. Walukiewicz, Integer Programming, PWN - Kluwer, Warszawa - Dordrecht.
  • e) H. T. Loh and P. Y. Papalambros, Computational implementation and tests of sequential linearization approach for solving mixed - discrete nonlinear design optimization, J. Mech. Design, ASME, 113, 335-345.
  • f) Y. K. Sui, L. X. Qian and J. Liu, Optimum design of continuous beam, In: Y. K. Cheung, J. H. W. Lee and A. Y. T. Leung, eds., Computational Mechanics, Proc. Asian Pacific Conf. on Comput. Mech., Hong - Kong, 11-13 Dec. 1991, Balhema, Rotterdam, 367-372.
  • g) J. Hertz, A. Krogh and R. G. Palmer, Introduction to the Theory of Neural Computation, Addison - Wesley, Reading.
  • 1992
  • a) J. Mottl, Excavator optimization using the ’voting method’, Comp. Meth. Appl. Mech. Engng., 98, 227-250.
  • b) S. Rajeev and C. S. Krishnamoorthy, Discrete optimization of structures using genetic algorithms, J. Struct. Engng., 118, 1233-1250.
  • c) R. T. Haftka and J. L. Walsh, Stacking - sequence optimization for buckling of laminated plates by integer programming, A1AA J., 30, 814-819.
  • d) J. Bauer, Algorithms of nondifferentiable optimization in discrete optimum structural design, ZAMM, 72, T563-T566.
  • e) S. A. May and R. J. Balling, A filtered simulated annealing strategy for discrete optimization of 3D steel frameworks, Structural Optimization, 4, 142-148.
  • f) C. M. Chan, An optimality criteria algorithm for tall steel building design using commercial standard sections, Structural Optimization, 5, 26-29.
  • g) L. M. da Cruz Simoes, Reliability of portal frames with discrete design variables, Structural Optimization, 5, 76-83.
  • h) W. Gutkowski, Controlled enumeration with constraints variations in structural optimization, ZAMM, 72, T447-T452.
  • i) M. M. Makela and P. Neittaanmaki, Nonsmooth Optimization, World Scientific, Singapore.
  • j) A. Salupere, Optimal design of rigid - plastic annular plates with piecewise constant thickness, Structural Optimization, 4, 186-192.
  • 1993
  • a) Ch. Zhang and H.-P. (Ben) Wang, Mixed-Discrete nonlinear optimization with simulated annealing, Engineering Optimization, 21, 277-291.
  • b) J. Cai and G. Thierauf, Discrete optimization of structures using an improved penalty function method, Engineering Optimization, 21, 293-306.
  • c) E. Salajegheh and G. N. Vanderplaats, Optimum design of trusses with discrete sizing and shape variables, Structural Optimization, 6, 79-85.
  • d) S. Jendo and W. M. Paczkowski, Multicriteria discrete optimization of large scale truss systems, Structural Optimization, 6, 238-249.
  • e) M. Libura, Analiza wrażliwości rozwiązań zadań optymalizacji dyskretnej, IBS PAN, Badania Systemowe t. 17, SYNPRESS, Warszawa.
  • 1994
  • a) W. Gutkowski and J. Bauer, eds., Discrete Structural Optimization, Proc. Symp. IUTAM, Zakopane, 30 August - 3 September, 1993, Springer, Berlin.
  • 1) Ph. Trompette, J. L. Marcelin and C. Schmeding, Optimal Damping of Beams and Plates by Genetic Algorithms, 1-11.
  • 2) J. Mottl, Optimization by the Voting Method of Structures Formed of Planar Constitutive Parts, 12-21.
  • 3) M. Kishi, T. Kodera, Y. Iwao and R. Hosoda, Neuro-Optimizer, Its Application to Discrete Structural Optimization, 22-29.
  • 4) P. Hajela and E. Lee, Genetic Algorithms in Topological Design of Grillage Structures, 30-39.
  • 5) J. Mączyński, Optimization of a Linear Objective Function with Logical Constraints, 40-46.
  • 6) K. Dems and Z. Mróz, On Optimal Structural Segmentation Problem, 47-60.
  • 7) E. Schäfer, J. Geilen and H. A. Eschenauer, Application of Discrete Optimization Techniques to Optimal Composite Structures, 61-70.
  • 8) A. Osyczka and J. Montusiewicz, A Random Search Approach to Multicriterion Discrete Optimization, 71-79.
  • 9) A. O. Rasskazov and A. S. Dekhtjar, Optimal Arrangement of Ribs in Rib Reinforced Plates and Shells, 80-87.
  • 10) J. Niczyj and W. Paczkowski, Application of the Expert System for Discrete Optimization of Space Truss, 88-97.
  • 11) V. V. Toropov, V. L. Markin and H. Carlsen, Discrete Structural Optimization Based on Multipoint Explicit Approximations, 98-107.
  • 12) E. P. Petrov, Optimization of Perturbation Parameters for Forced Vibration Stress Levels of Turbomachinery Blade Assemblies, 108-117.
  • 13) G. I. N. Rozvany and M. Zhou, New Discretized Optimality Criteria Methods - State of the Art., 118-134.
  • 14) G. I. N. Rozvany, M. Zhou, T. Birker and T. Lewinski, Discretized Methods for Topology Optimization, 135-147.
  • 15) N. Yoshikawa and S. Nakagiri, Homology Design of Flexible Structure by the Finite Element Method, 148-157.
  • 16) S. Shevchenko, Optimization of Structure and Development of Production System, 158-167.
  • 17) W. Gutkowski, J. Bauer and Z. Iwanow, Support Number and Allocation for Optimum Structure, 168-177.
  • 18) J. Korbicz and D. Ucinski, Sensor Allocation for State and Parameter Estimation of Distributed Systems, 178-189.
  • 19) J. Holnicki-Szulc, F. Lopez-Almansa and A. Mackiewicz, Optimal Location of Piezoelectric Actuators, 190-199.
  • 20) A. Čižas and S. Stupak, Optimal Discrete Design of Elastoplastic Structures, 200-208.
  • 21) S. Jendo and W. M. Paczkowski, Multicriterion Discrete Optimization of Space Trusses with Serviceability Constraints, 209-220.
  • 22) M. Pyrz, Symbolic Computations Approach in Controlled Enumeration Methods Applied to Discrete Optimization, 221-227.
  • 23) A. T. Janczura, General P-A Method in Discrete Optimization of Frames, 228-240.
  • 24) A. A. Belal, A More General Optimization Problem for Uniquely Decodable Codes, 241-250.
  • b) J.A.Karczewski and W.M. Paczkowski, Discrete multicriterion optimization of a space truss, Int. J. Space Structures, 9, 1, 27-38.
  • c) A.S. Hoback and K.Z. Truman, A new method for finding the global and discrete optima of structural systems, Computers and Structures, 52, 1, 127-134.
  • d) H.M. Amir and T. Hasegawa, Shape optimization of skeleton structures using mixed-discrete variables, Structural Optimization, 8, 2/3, 125-130.
  • e) J.S. Arora, M.W. Huang and C.C. Hsieh, Methods for optimization of nonlinear problems with discrete variables: a review, Structural Optimization, 8, 69-85.
  • f) H.-L. Li and Ch.-T. Chou, A global approach for nonlinear mixed discrete programming in design optimization, Engineering Optimization, 22, 109-122.
  • g) J. Bauer, A survey of methods for discrete optimum structural design, Computer Assisted Mechanics and Engineering Sciences, 1, 27-38.
  • 1995
  • a) P.B. Thanedar and G.N. Vanderplaats, Survey of discrete variable optimization for structural design, J. Struct. Engng., 121, 2, 301-306.
  • b) C.H. Tseng, L.W. Wang and S.F. Ling, Enhancing branch - and - bound method for structural optimization, J. Struct. Engng., 121, 5, 831-837.
  • c) Ch.-M. Chan, D.E. Grierson and A. N. Sherbourne, Automatic optimal design of tall steel building frameworks, J. Struct. Engng., 121, 5, 838-847.
  • d) A.E. Sepulveda, Optimal material selection using branch and bound techniques, AIAA J., 33, 2, 340-347.
  • e) C.J. Shih and T.K. Lai, Mixed - discrete fuzzy programming for nonlinear engineering optimization, Engineering Optimization, 23, 187-199.
  • f) S.-S. Lin, Ch. (Chuck) Zhang and H.-P. (Ben) Wang, On mixed - discrete nonlinear optimization problems: a comparative study, Engineering Optimization, 23, 287-300.
  • g) S.-J. Wu and P.-T. Chow, Integrated discrete and configuration optimization of trusses using genetic algorithms, Computers and Structures, 55, 4, 695-702.
  • h) S.-J. Wu and P.-T. Chow, Steady-state genetic algorithms for discrete optimization of trusses, Computers k Structures, 56, 6, 979-991.
  • i) J. Bauer, Discrete variable optimization of nonhomogeneous circular and annular plastic plates, In: N. Olhoff and G.I.N. Rozvany eds., First World Congress of Structural and Multidisciplinary Optimization, Pergamon, 933-938.
  • j) J. Bauer and W. Gutkowski, Discrete Structural Optimization: A Review, In: N. Olhoff and G.I.N. Rozvany eds, First World Congress of Structural and Multidisciplinary Optimization, Pergamon, 901-908.
  • k) W. Gutkowski, J. Bauer, Z. Iwanow, Optimum support of large span structures, Bulletin of IASS, 36, 3, 183-190.
  • 1) J.A. Hoogevcen and S.L. van de Velde, Lagrangian bounds by use of slack variables; applications to machine scheduling problems, Mathematical Programming, 70, 2, 173-190.
  • 1996
  • a) E. Salajegheh, Discrete variable optimization of plate structures using dual variables, Computers & Structures, 58, 6, 1131-1138.
  • b) Z. Michalewicz, Algorytmy genetyczne -+- struktury danych = programy ewoluacyjne, WNT, Warszawa.
  • 1997
  • a) W. Gutkowski, Structural optimization with discrete design variables, Eur. J. Mech., A/Solids, 16, 107-126.
  • b) S. Jendo, W.M. Paczkowski, Decomposition in discrete polyoptimization problems, 2nd World Congress of Structural and Multidisciplinary Optimization, W. Gutkowski and Z. Mróz Eds., Vol. 1, 79-84.
  • c) W. Gutkowski, J. Zawidzka, Sequential algorithm of discrete minimum weight design of structures, 2nd World Congress of Structural and Multidisciplinary Optimization, W. Gutkowski and Z. Mróz Eds., Vol. 1,313-318.
  • d) S. Kaliszky, I. Kirchner, J. Logo, Discrete optimization of elasto-plastc trusses with plastic deformation and stability constraints, 2nd World Congress of Structural and Multidisciplinary Optimization, W. Gutkowski and Z. Mrdz Eds., Vol. 1, 319-324.
  • e. W.M. Paczkowski, J.A. Karczewski, On some problems of the discrete prferable solution choice, 2nd World Congress of Structural and Multidisciplinary Optimization, W. Gutkowski and Z. Mróz Eds., Vol. 1, 325-330.
  • f) T. Turkkila, Discrete multicriteria optimization of truss structures with material selection, 2nd World Congress of Structural and Multidisciplinary Optimization, W. Gutkowski and Z. Mróz Eds., Vol. 1, 331-336.
  • g) W. Gutkowski, (Ed.), Discrete structural optimization, CISM Courses and Lectures No.373, Springer, Wien.
  • h) J.W. Baugh Jr., S.C. Caldwell, E.D. Brill Jr., A mathematical programming approach for generating alternatives in discrete structural optimization, Engineering Optimization, 28, 1-2, 1-31.
  • i) T.B. Boffey, D.F. Yates, A simplex - based approach to a class of problems associated with truss design, Engineering Optimization, 28, 1-2, 127-156.
  • j) F.Y. Kocer and J.s. Arora, Standarization of steel, pole design using discrete optimization, J. Structural Engineering, 123, 3(1997), 345-349.
  • k) P. Hajela, Stochastic Search in Discrete Structural Optimization Simulated Annealing, Genetic Algorithms and Neural Networks, [w:] W.Gutkowski, (Ed.) Discrete Structural Optimization, Chapter 2, CISM Courses and Lectures No. 373, Springer, Wien, 55-133.
  • l) A.B. Templeman, Heuristic Methods in Discrete Structural Optimization, [w:j W.Gutkowski, (Ed.) Discrete Structural Optimization, Chapter S, CISM Courses and Lectures No. 373, Springer, Wien, 135 165.
  • m) J. Farkas and K. Jarmai, Backtrach Method with Applications to DSO, [w:] W.Gutkowski, (Ed.) Discrete Structural Optimization, Chapter 4, CISM Courses and Lectures No. 373, Springer, Wien, 167-231.
  • 1998
  • a) D.E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa (tłum. z j. angielskiego).
  • b) S. Wang, K. L. Teo, H. W. J. Lee, A new approach to nonlinear mixed discrete programming problems, Engineering Optimization, 30, 249-262.
  • c) Jong Hyup Lee and Chang Sup Sung, Joint configuration of backbone and logical networks on a reconfigurable pachet - switched network with ureliable links, Engineering Optimization, 30, 3-4, 309-331.
  • 1999
  • a) W. Gutkowski, Z. Iwanow and J. Bauer, Minimum Weight Design Using Genetic Algorithm with Controlled Mutation, [w:] Proc. 3nd WCSMO, C.L. Bloebaun, K.E. Lewis, R.W. Mayne (Eds.), May 17-21, Buffalo, New York, vol. 1, 275-276.
  • b) W. M. Paczkowski, Wybrane problemy dyskretnej optymalizacji ewolucyjnej, Prace Naukowe Politcchniki Szczecńnskiej, Nr544, Instytut Inżynierii Lądowej Nr 33, Szczecin.
  • 2000
  • a) W. Gutkowski, J. Bauer and J. Zawidzka, An effective method for discrete structural optimization, Engineering Computations, 17, 4, 417-426.
  • 2001
  • a) R. Stocki, K. Kolanek, S. Jendo, M. Kleiber, Study on discrete techniques in reliability - based optimization of truss structures, Computer and Structures, 79, 2235-2247.
  • b) W. Gutkowski, Z. Iwanow, J. Bauer, Controlled mutation in evolutionary structural optimization, Structural and Multidisciplinary Optimization, 21, 5, 355-360.
  • c) J. Błachut, H.A. Eschenauer (Eds.), Energing methods for multidisciplinary optimization, CISM Courses and Lectures No.425, Springer, Wien-New York.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB4-0018-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.