PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Statistical modelling of rough surfaces and finite element contact analysis

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work statistical aspects of the micromechanics of normal and tangential models between metallic rough surfaces are described. A detailed statistical analysis of rough surfaces is performed in terms of asperity (peak or summit) distribution and the distribution of curvature at the asperities. A random surface model of asperities with the Gaussian height distribution combined with mechanical description of a single peak based on the Hertz theory coupled with the Mindlin friction theory is investigated. The complete description of anisotropic random surfaces is restricted here to strongly rough surfaces; for such surfaces the summits are represented by highly eccentric elliptic paraboloids having their semimajor axes oriented in the derection of the grain. Some of the limitations of early contact models have been successively overcome by more generalized model in order to incorporate the deformation of asperities to be assumed elasto-plastic. Because the 20-node solid element of serendipity family does not fulfill the physical contact requirements properly (the equivalent nodal forces include negative values) an original 21-node three-dimensional transient element for contact problem was developed. The quadratic line and plane zero-thickness diagonal joint elements obtained by Lobatto integration scheme have been implemented for simulation of the displacement discontinuity at the contact syrface (separation, slip along the interface). Essentially most of the study is devoted to the three-dimensional contact analysis taking into account the anisotropic properties between two contacting bodies in presence of the unilateral contact conditions and non-linear friction coefficients in both the principal tangential directions. The statistical contact algorithms have been coded into both workstation Sun Ultra 1 and supercomputer SGI Power Challenge XL finite element programs for static 2D- and 3D- dimensional elasto-plastic contact analysis. Some examples have been selected to demonstrate applicability of the proposed method.
Rocznik
Tom
Strony
3--118
Opis fizyczny
Bibliogr. 208 poz., tab., wykr.
Twórcy
  • Technical University of Szczecin
Bibliografia
  • [1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, U.S. Dapartment of Commerce, National Bureau of Standards Applied Mathematics Series, Vol. 55, 1972.
  • [2] P. Alart and A. Curnier, ‘A mixed formulation for frictional contact problems prone to Newton like solution methods’ Compnt. Methods Appl. Mec.h. Engrg.. 92. 353-375 (1991).
  • [3] P. Alart, ‘A simple contact algorithm in applied to large sliding and anisotropic friction’, in A. Curnier, (ed.), Pivc. Contact Mechanics Intern. Symp . October 7-9, EPLF, Lausanne, Switzerland, pp 321-336, 1992.
  • [4] L. Anand. ‘A constitutive model for interface friction’, Compnt. Mcch., 12. 197 213 (1993).
  • [5] J. H. Argyris, G. Faust, J. R. Roy. J. S/.irnmat. P. VVarnke, K. J. Wiliam, ‘Finite Eleinente zur Berechnung von Spannbeton Reaktor Druckbehaltern, DAfStb, Lssue No. 234 (1973).
  • [6] N. Back, M. Burdekin and A. Cowley, ‘Analysis of machine tool joints by the finite element method’, in: Proc. 14th Intemut. Machine Tool Design and Research Conf., S. A.Tobias and F. Koenigsberger, eds., MacMillan, London, pp. 529 537, 1974.
  • [7] N. Back, M. Burdekin and A. Cowley, ‘Review of the research on fixed and sliding joints’, in: Proc. 13th Intemat. Machine Tool Design and Research Conf., S.A.Tobias and F. Koenigsberger, eds., MacMillan, London, pp 87-97, 1973.
  • [8] N. Back, M. Burdekin, A. Cowley, ‘Pressure disstribution and deformations of machined components in contact’, Int. J. Mech. Sci., 15, 99-1010 (1973).
  • [9] E. J. Barbero, R. Luciano and E. Sacco, ‘Three-dimensional plate and contact/friction elements for laminated composite joints’, Comput. Struct., 54 , 689- 703 (1995).
  • [10] K. J Bathe, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New Jersey, 1996.
  • [11] G. Beer, ‘An isoparametric joint/interface element for finite element analysis’, Int. j. numer. methods eng , 21, 585 600 (1983).
  • [12] N.M. Belajev, Bulletin of Institution of Roads and Transportation, St Petersburg, 1917. (In Russian)
  • [13] B. Bhushan, Tribology and Mechanics of Magnetic Storage Devices, Springer, New York, 1990.
  • [14] B. Bhushan, Tribology of solid contacts in magnetic recording devices’, Appl. Mech. Rev. ASME, 47, 199 203 (1994)
  • [15] B. Bhushnn, Handbook of Micro/Nanotrxbology, CRC, Boca Raton FL, 1995.
  • [16] B. Bhushnn, Contact mechanics of rough surfaces in tribology: multiple asperity contact, Tnbology Utters, A, 1 35 (I99M)
  • [17] B. Binder and N Gehheken, ‘Theonrtlral and numerical aspects of 3D-finite element elasto-plastic- contact analysis’. In: D.R.J. Owen, E. Oñate and E. Hinton, Proc. 3nd Int. Conf. COMPLAS, Pineridge Pleas, Swansea, pp 421 432, 1992
  • [18] S. Björklund, ‘A random model for micro-slip between nominally flat surfaces', J. of Tribology. Trans. AS ME, 119, 726-732 (1997).
  • [19] A.J. Black, E.M. Kopalinsky and P.L.B. Oxley, ‘Asperity deformation models for explaining the mechanisms involved in metallic sliding friction and wear-a review, Proc. Instn. Mech. Engrs, Part C: Journal of Mechanical Engineering Science, 207, 335-353 (1993).
  • [20] M.W. Bloch. M.W. Orobinski, ‘A modification of the finite element method to computation the elastic and plastic two dimensional contact problem’, Problerny Procnosti, 5, 21-27 (19S3). (in Russian)
  • [21] F.D. Bowden and D. Tabor, The Friction and Lubrication of Solids. Part II, Clarendon Press, Oxford, 1964.
  • [22] D.E. Brewe, B.J. Hamrock, ‘Simplified solution for elliptical-contact deformation between two elastic solids', J. of Lubrication Technology, Trans. ASME, 99. 485-487 (1977).
  • [23] R. Buczkowski, M. Kleiber, ‘Finite element analysis of elastic-plastic plane contact problem with nonlinear interface compliance’, J. Thcor. Appl. Mech., 30. 855-883 (1992).
  • [24] R. Buczkowski and M. Kleiber, ‘Elasto-plastic constitutive interface model for an axisymmetric contact problem’, Cornput. Assisted Mech. Engng Sci., 1, 95-113 (1994).
  • [25] R. Buczkowski, M. Kleiber. U. Gabbert, ‘On linear and higher order standard finite elements for 3D-nonlinear contact problem’, Comput. Struct., 53, 817-823 (1994).
  • [26] R. Buczkowski, U. Gabbert. 'Finite- Elemente- Formulierung des 3D Kontaktproblems unter Beriick- sichtigung eines verfestigenden Reibungsgesetzes, ZAMM, 76, S5, 81 82 (1996).
  • [27] R. Buczkowski, M. Kleiber, ‘Elasto-plastic interface model for 3D-frictional orthotropic contact problems’, Int. j. numer. methods eng., 40, 599-619 (1997).
  • [28] R. Buczkowski, ‘21 -node hexahedral isoparametric element for analysis of contact problems ’, Commun. applied, numer. methods, 14, 681-692 (1998).
  • [29] R. Buczkowski and M. Kleiber, A stochastic model of rough surfaces for finite element contact analysis, Comput. Methods Appl. Mech. Engrg., 169, 43-59 (1999).
  • [30] M. Burdekin, N. Back and A. Cowley, ‘An elastic mechanism for micro -sliding characteristics between contacting machined surfaces’, J. Mech. Eng. Sex., 20, 121-127 (1978).
  • [31] M. Burdekin, N. Back and A. Cowley, ‘Experimental study of normal and shear characteristics of machined surfaces in contact’, J. Mech. Eng. Sci., 20, 129-132 (1978).
  • [32] A.W. Bush, R.D. Gibson and Keogh G.P., The elastic contact of a rough surfaces, Wear, 35, 87-111 (1975).
  • [33] A.W. Bush, R.D. Gibson and Keogh G.P., The limit of elastic deformation in the contact of rough surfaces, Mech. Res. Comm., 3, 169-174 (1976).
  • [34] A.W. Bush, R.D. Gibson and Keogh G.P., ‘Strongly anisotropic rough surfaces’, J. Lubrication Technology Trans ASME, 101, 15-20 (1979).
  • [35] W.R. Chang, I. Etsion and D.B. Bogy, ‘An elastic plastic model for the contact of rough surfaces’, J. of Tribology, Trans. ASME, 109, 257-263 (1987).
  • [36] W.R. Chang, An elastic plastic contact model for a rough surface with an ion-plated soft metallic coating, Wear, 212, 229-237 (1997).
  • [37] S. Cescotto and R. Charlier, ‘Frictional contact finite elements based on mixed variational principles’, Int. j. numer. methods eng.. 36, 1681-1701 (1994).
  • [38] J.H. Cheng, N. Kikuchi, ‘An analysis of metal forming processes using large deformation elastic-plastic formulations’, Comput. Meth. Appl. Mech. Engrg., 49, 71-108 (1985).
  • [39] J.H. Cheng, N. Kikuchi, ‘An incremental constitutive relation of unilateral contact friction for large deformation analysis’, J. Appl. Mech. Trans ASME, 52, 639-648 (1985).
  • [40] Wu Chengwei, Zheng Linqing, A general expression for plasticity index, W'ear, 121, 161-172 (1988).
  • [41] C. K. Choi, N. H. Lee, ‘Three dimensional transition solid elements for adaptive mesh gradation’, Structural Eng. Mech. Int. J., 1, 61-74 (1993).
  • [42] C. K. Choi, G. T. Chung, ‘A gap element for three-dimensional elasto-plastic contact problems’, Comput. Struct., 61. 1155-1167 (1996).
  • [43] R. D. Cook, D. S. Malkus, M. E. Plesha, Concepts and Applications of Finite Element Analysis, 3-rd edn.. Wiley and Sons, New York, 1989.
  • [44] M.A. Crisfield, Non- linear Finite Element Analysis of Solids and Structures, Vol.I: Essentials, Wiley, Chichester. 1991
  • [45] A. Curnier, ‘A theory of friction’, Int. J. Solids Struct., 20, 637-647 (1984).
  • [46] C. S. Desai, Y. Ma, ‘Modelling of joints and interfaces using the distributed-state concept’, Int.j.numer.anal, meth.geomech.. 16. 623-653 (1992).
  • [47] A.N. Dinnik, Impact and Compression of Elastic Bodies, Collected Works, Akademia Nauk SSSR, Moscow, 1952. (In Russian)
  • [48] D. Dowson, History of Tnbology, Longman. London, 1979.
  • [49] A. Dyson, H P. Evans, R.W. Snidle, ‘A simple, accurate method for calculation of stresses and deformations in elliptical Herztian contacts’, Proc. Instn. Mech. Engrs, Part C: Journal of Mechanical Engineering Science, 206, 139 141 (1992).
  • [50] D. G. Evseev, B.M. Medvcedev and G.G. Grigoriyan. ‘Modification of the elastic-plastic model for the contact of rough surfaces’. Wear, 150. 79-88 (1991).
  • [51] E. Felder, ‘Experimental study of the frictional anisotropy of mild steel sheet’, J. Mec. Th. Appl. 7, 479-504 (198S). (in French)
  • [52] E. Felder, ‘Friction, adhesion, lubrication. A model of anisotropic solid friction’, C R. Acad. Sc. Paris, 303, Serie II, 643-646 (1986). (in French)
  • [53] I. Fried, D. S. Malkus, ‘Finite element mass matrix lumping by numerical integration with no convergence rate loss’, Int. J. Solids Structures, 11, 461-466 (1975).
  • [54] B. Fredriksson, ‘Experimental determination frictional properties in araldite b contacts’, Rep. LiTH- IKP-R-061, Linkdping Institute of Technology, 1975.
  • [55] B. Fredriksson, ‘Finite element solution of surface nonlinearities in structural mechanics with emphasis to contact and fracture mechanics problems’, Comput. Struct., 6, 281-290 (1976).
  • [56] U. Gabbert and K Graeff Weinberg, ‘Eine pNh-Elementformulierung für die Kontaktanalyse, ZAMM, 74, T195 T197 (1994).
  • [57] L. A. Galili, Contact Problems in Theory Elasticity and Viscoplasticity, Nauka, Moscov, 1980. (In Russian)
  • [58] A. Gens, I. Carol and E.E. Alonso, ‘An interface clement formulation for the analysis of soil- rclnforreinenl Interaction', Comput Geotech , 7, 133 151 (1989)
  • [59] A Gens, I Carol and E. E. Alonso, 'Hock Joints FEM implementation and applications’, in A. P. S. Selvadurai and M. J. Boulon, (eds.), Mechanics of Geomaterial Interfaces, Elsevier, Amsterdam, pp. 305 420, 1995
  • [60] S. Ghosh, ‘Arbitrary Lagrangian-Eularian finite element analysis of large deformation in contact bodies', Int. J. numer. methods eng , .33, 1891-1925 (1992)
  • [61] A. E. Giannakopoulos, ‘The return mapping. method for the integration of friction constitutive relations’, Comput. Struct., 32, 157-167 (1989)
  • [62] G.M.L. Gladwell, Contact Problems in the Classical Theory of Elasticity, Sijthoff & Noordhof, Alphen an den Rijn, The Netherlands, 1980.
  • [63] H. Glaser, ‘New constitutive equations for the contact of deformable bodies with friction’, Acta Mechanica. 95, 103-116 (1992).
  • [64] J.A. Greenwood and J.B.P. Williamson, ‘Contact of nominally flat surfaces’, Proc. Roy. Soc. London, A295, 300-319 (1966).
  • [65] J.A. Greenwood and J.H. Tripp. ‘The contact of two nominally rough surfaces’, Proc. Instn Mech. Engrs, 185. 625 -633 (1970-71).
  • [66] J.A. Greenwood and J.B.P. Williamson. ‘Developments in the theory of surface rughness', in: Proc. 4th Leeds-Lyon Symp. on Tnbology, D. Dowson et al. eds., Mechanical Engineering Publications. London, pp. 167-177, 1977.
  • [67] J.A. Green wood. ‘A unified theory of surface roughness’, Proc. Roy. Soc. Load., A393, 133- 157 (1984).
  • [68] J.A. Greenwood. Formulas for moderately elliptical herztian contacts’, J. of Tribology. Trans. ASME. 107. 501-504 (1985).
  • [69] J.A. Greenwood, ‘Contact pressure fluctuations’, Proc. Instn. Mech. Engrs, Part J: Journal of Engi- neertng Tnbology. 210, 281-284 (1996).
  • [70] J.A. Greenwood. Analysis of elliptical Herztian contacts. Tnbology International. 30 No.3. 235-237 (1997).
  • [71] A. K. Gupta. ‘A finite element for transition from a fine to a coarse grid’. Int. j. numer. methods eng.. 12. 35 45 (1978).
  • [72] A.M. Habraken. J. P. Radu and R. Charlier, ‘Numerical approach of contact with friction between two bodies in large deformations’, in A. Curnier, (ed.), Proc. Contact Mechanics Int. Symp. PPL'R Lausanne, pp 391-408, 1992.
  • [73] J. O. Hallquist, K. Schweizerhof and D. Stillman. ‘Efficiency refinements of contact strategies and algorithms in explicit FE programming’, in D. R. J. Owen, E. Onate and E. Hinton, Proc. 3rd Int. Conf. COMPLAS, Pineridge Press, Swansea, pp. 457-481, 1992.
  • [74] J.-H. Heegaard and A. Curnier, ‘An augmented lagrangian method for discrete large-slip conatct problems’, Int. j. numer. methods eng., 36, 569-593 (1994).
  • [75] D A. Hills, D. Nowell, A. Sackfield, Mechanics of Elastic Contacts, Butterworth-Heinemann, Oxford, 1993.
  • [76] E. Hinton, T. Rock, O.C. Zienkiewicz, ‘A note on mass lumping and related processes in the finite element method’. Earthquake eng. struct, dyn., 4. 245-249 (1976).
  • [77] E. Hinton, D.R.J. Owen, Finite Elements in Plasticity: Theory and Practice, Pineridge Press Swansea U.K., 1980.
  • [78] Q.-C. Ho and A. Curnier, ‘Anisotropic dry friction between two orthotropic surfaces undergoing large displacements’, Eur. J. Mech. A/Solids., 12, 631-666 (1993).
  • [79] J.A. Hohberg, ’A note on spurious oscillations in FEM joint elements’, Earthquake eng. struct, dyn., 19, 773-779 (1990).
  • [80] J.-H. Hohberg, A joint element for the nonlinear dynamic analysis of arch dams, Birkhiiuser, Basel, 1992.
  • [81] P. Hood, ‘Frontal solution program for unsymmetric matrices’, Int. j. numer. methods eng.. 10. 379-399 (1976).
  • [82] J.H. Horng, An elliptic elastic plastic asperity microcontact model for rough surfaces, J. of Tnbology Trans ASME, 120, 82 88 (1998).
  • [83] P. Hrycaj, S. Cescotto, J. Oudin, 4Elasto-plastic finite element analysis of unilateral contact with generalized Coulomb friction’. Eng. Comput., 8. 291 303, (1991).
  • [84] M. T. Huber, 4The friction forces and the part they play in some railway problems’, Arch. Mech., 1. 271-310 (1949). (in Polish)
  • [85] T.R.J. Hughes, The Finite Element Method. Linear Static and Dynamic Finite Element Analysis, Prentice-Hall Inc., New Jersey, 1987.
  • [86] I.M. Hutchings. Tnbiology: Friction and Wear of Engineering Materials, Edward Arnold, London, 1992.
  • [87] A. Ibrahimbegovic and E. L. Wilson, ‘Unified computational model for static and dynamic frictional contact analysis. Int. j. numer. methods eng.. 34, 233-247 (1992).
  • [88] A. Jarzębowski and Z. Mróz, ‘On slip and memory rules in elastic, friction contact problems’, Acta Mechanica, 102, 199-216 (1994).
  • [89] L. Jing and 0. Stephansson. ‘Mechanics of rock joints: experimental aspects’, in A. P. S. Selvadurai and M. J. Boulon, (eds.), Mechanics of Geomaterial Interfaces, Elsevier, Amsterdam, pp. 317-342, 1995.
  • [90] L. Jing, E. Nordlund. O A. Sthepansson. ‘3-D Constitutive model for rock joints with anisotropic friction and stress dependency in shear stiffness’, Int. J. Rock Mech. Mm. Sr.i. & Geomech. Abstr., 31, 173 178 (1994).
  • [91 j K.L. Johnson. Contact Mechanics, Cambridge University Press, Cambridge, 1985.
  • [92] C. Katz and H. Werner. ‘Implementation of nonlinear boundary conditions in finie element analysis’, Comput Struct.. 15, 299 304 (1982).
  • [93] N. Kikuchi and J.T. Oden. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Elemenet Methods, SIAM, Philadelphia, 1988.
  • [94] A. Klarbring, ‘A mathematical programming approach to three-dimensional contact problems’, Comput. Methods Appl. Mech. Engrg., 58, 175-200 (1985).
  • [95] A. Klarbring, ‘The influence of slip hardening and interface compliance on contact stress distributions. A mathematical programming approach’, In: A. P. S. Selvadurai and G. Z. Voyiadjis, (eds.), Mechanics of Material Interfaces, Elsevier, Amsterdam, pp. 43-59, 1986.
  • [96] A. Klarbring, G. Bjorkman, ‘A mathematical programming approach to contact problems with friction and varying contact surface’, Comput. Methods Appl. Mech. Eng., 30, 1185-1198 (1988).
  • [97] A. Klarbring, B. Torstenfeld, ‘A Newton method for contact problems with friction and interface compliance’, Proc. of the Third Inter. Conf.on Computational Plasticity, 6-10 April 1992, Barcelona, Spain, (Eds. D.R.J. Owen, E. Onate, R. Hinton), Pineridge Press, Swansea U.K., pp.409-420 (1992).
  • [98] A. Klarbring, ‘Large displacement frictional contact: a continuum framework for finite element dis¬cretization’, Eur. J. Mech. A/Solids, 14, 237-253 (1995).
  • [99] M. Kleiber, Incremental Finite Element Modelling in Non-linear Solid Mechanics, Ellis Horwood, Chichester, 1989.
  • [100] M. Kleiber and W. Sosnowski, ‘Parameter sensitivity analysis in frictional contact problems of sheet metal forming’, Comput. Mech., 16, 297-306 (1995).
  • [101] F.G. Kollmann, Welle.-Nabe-Verbindungen; Gestaltung, Auslegung Ausuiahl. Springer-Verlag, Berlin, 1984.
  • [102] L. Kops, D.H. Abrams, 'Effect of shear stiffness of fixed joints on thermal deformation of machine tools’, Annals of CHIP. 33, 223 238 (1984).
  • [103] I. V. Kragolflky, M.N. Dobychin and V.S Kombalov, Friction and Wear-Calculation Methods, MaSinostroAnle, Moslem, 1977. (in Russian)
  • [104] S. Kucharski, T. Klimczak. A. Polijaniuk and J. Kaczmarek, 'Finite elements model for the contact of rough surfaces’. Wear, 177, 1-13 (1994).
  • [105] J. Larsson, S. Biwa and B. Storakers , ‘Inelastic flattening of rough surfaces'. Mechanics of Materials, 31. 29-41 (1999).
  • [106] T.A. Laursen, J.C. Simo. ‘On the formulation and numerical treatment, of finite deformation frictional contact problems, in: Nonlinear Computational Mechanics, State of the Art (Eds. P. Wriggors, W. Wagner), Springer-Verlag, pp.716-736, Berlin, 1991.
  • [107] T. A. Laursen and J. C. Simo, ‘A continuum -based finite element, formulation for the implicit solution of multibody, large deformation frictional contact problems’, Int. j. numer. methods eng., 36. 3451- 3485 (1994).
  • [108] C. Y. Lee and J. T. Oden. ‘A priori error estimation of hp-finite element approximations of frictional conatct problems with normal compliance', Int. J. Engng Set., 31. 927-952 (1993).
  • [109] X. L. Lei and G. Swoboda, ’On stress oscillations in contact friction interface element’, Report Uni- versitat Innsbruck, Institut fur Baustatik und Verstiirkte Kunstoffe, 1993.
  • [110] Z.M. Levina, ‘Research on the static stiffness of joints in machine tools', Proc. 8th Intemat. Machine Tool Design and Research Conf., London, pp. 737-758, 1965.
  • [111] Z. M. Levina and D. N. Reshetov, Contact Stiffness in Machine Design, Masinovedenie, Moskau. 1971. (in Russian)
  • [112] G.-.J. Lin. N. Kikuchi and S. Takahashi. ‘Investigation of interfacial friction model and thermal effects on composite metal forming processes by adaptive remeshing method’, in M.H Attia and R. Kornanduri, (eds.), Contact Problems and Surface Interactions in Manufacturing and Tribologtcal Systems. PED- Vol.67, TRIB-Vol.4, ASME. New-York, pp. 105 113. 1993.
  • [113] D. Lochognics and J. Oudin, ‘External penalized mixed functional algorithms for unilateral contact and friction in a large strain finite element framework', Eng. Comput., 12, 307-331 (1995).
  • [114] M.S. Longuet-Higgins, ‘The statistical analysis of a random, moving surface’, Phil. Dans. R. Soc. London, A2 49 , 321-387 (1957).
  • [115] M.S. Longuet-Higgins, ‘Statistical properties of an isotropic random surface’, Phil. Trans. R. Soc. London, A250, 157-174 (1957).
  • [116] A.I. Lure, Three-dimensional Problems of the Theory of Elasticity, Intersience, New York, 1964.
  • [117] W. I. Maksak, Microshding and Contact Stiffness of Metallic Bodies, Nauka. Moskau, 1975. (in Russian)
  • [118] M. Mazurkiewicz, W. Ostachowicz, ‘Theory of finite element method for elastic contact problems of solid bodies’, Comput. Stmct., 17, 51-59 (1983).
  • [119] J.I. McCool, S.S. Gassel, The contact of two surfaces having anisotropic roughness geometry, ASLE Special Publication, SP 7, 29-38 (1981).
  • [120] J.I. McCool, Comparison of models for the contact of rough surfaces. Wear. 107, 37-60 1986.
  • [121] J. M. McDill, J. A. Goldak, A. S. Oddy, M. J. Bibby, ‘Isoparametric quadrilaterals and hexahedrons for mesh-grading algorithms’, Commun. applied, numer. methods, 3, 155-163 (1987).
  • [122] R. Michałowski and Z. Mróz, ‘Associated und non-associated sliding rules in contact friction problems’, Arch. Mech., 30, 259-276 (1978).
  • [123] B.B. Mihic, ‘Thermal contact conductance: theoretical considerations’, Int. J. Heat Mass Transfer, 17, 205-214 (1974).
  • [124] R.D. Mindlin, ‘Compliance of elastic bodies in contact’, J. Appl. Mech. ASME, 71, 259-268 (1949).
  • [125] D.J. Morton, J.M. Tyler, J.R. Dorroh, ‘A new 3D finite element for adaptive h-refinement in 1-irregular meshes’, Int. j. numer. methods eng., 38, 3889 4008 (1995).
  • [126] Z. Mroz, S. Stupkiewicz, ‘An anisotropic friction and wear model’, Int. J. Solids Struct., 31, 1113-1131 (1994).
  • [127] Z. Mróz, G. Giambanco, ‘An interface model for analysis of deformation behavour of discontinuities’, Int. j. numer. anal. meth. geomech., 20, 1-33 (1996).
  • [128] Z. Mroz, S. Stupkiewicz, ‘Constitutive model of adhesive and ploughing friction in metal-forming processes’, Int. J. Mcch. Sci., 40, Nos. 2-3, 281-303 (1998).
  • [129] U. Nackenhorst, ‘An adaptive finite element method to analyse contact problems’, in M.H. Aliabadi and C. Alessandri. (eds.), Contact Mechanics II. Computational Techniques, Computational Mechanics Publications, Southampton, pp. 241-248, 1995.
  • [130] P.B. Nayak, ‘Random process model of rough surfaces’, .J. Lubrication Technology Trans. ASME. 93, 398-407 (1971).
  • [131] P.B. Nayak. ‘Some aspects of surface roughness measurment’, Wear. 26, 165-174 (1973).
  • [132] P.B. Nayak, ‘Random process model of rough surfaces in plastic’, Wear. 26, 305-333 (1973).
  • [133] J.T. Oden and J.A.C. Martins, ‘Models and computational methods for dynamic friction phenomena’, Comput. Methods Appl. Mech. Engrg., 52, 527-634 (1985).
  • [134] R.A. Onions and J.F. Archard, ‘The contact of surfaces having a random structure’, J. Phys. D: Appl. Phys.. 6. 289-304 (1973).
  • [135] W. Ostachowicz, ‘Mixed finite element method for contact problems’, Comput. Struct.. 18. 937 945 (1984).
  • [136] G.N. Pande, S. Pietruszczak, ‘Symmetric tangential stiffness formulation for non -associated plasticity’, Comput. Geoter.h., 2 , No.2. 89 99, (19S6).
  • [137] P. Papadopoulos and R. L. Taylor. ‘A mixed formulation for the finite element solution of contact problems’, Comput. Methods Appl. Mech. Engrg.. 94, 373-389 (1992).
  • [138] P. Papadopoulos and R. L. Taylor, ‘A simple algorithm for three-dimensional finite element analysis of contact problems’, Comput. Struct., 46, 1107-1118 (1993).
  • [139] H. Parisch, Ch. Lubbing, ‘A formulation of arbitrarily shaped surface elements for three-dimensional large deformation contact with friction’, Int. j. numer. methods eng., 40, 3359-3383 (1997).
  • [140] J. K Park and B. M. Kwak, ‘Three-dimensional frictional contact analysis using the homotopy method', J Appl. Mech., ASME, 61, 703-709 (1994).
  • [141] G. Peric and D. R. J. Owen, ‘Computational model for 3D-contact problems with friction based on the penalty method’, Int. j. numer. methods eng., 35, 1289-1309 (1992).
  • [142] M.E. Plesha, 'Constitutive models for rock discontinuities with dilatancy and surface degradation’, Int. j. numer. anal. meth. geomech., 11, 345-362 (1987).
  • [143] M.E. Plesha, R. Ballarini, A. Parulekar, ‘Constitutive model and finite element procedure for dilatant contact problems’, J. of Engrg.Mech., ASCE, 115, 2649-2668 (1989).
  • [144] M. E. Plesha, ‘Rock joints: theory, constitutive equations’, In: A. P. S. Selvadurai and M. J. Boulon, (eds.), Mechanics oj Gcomaterial Interfaces, Elsevier, Amsterdam, pp. 375-393, 1995.
  • [145] Pullen .J and .J. B. P. Williamson, 'On the plastic contact of rough surfaces’, Proc. Roy. Soc. Lond., A327, 159 173 (1972)
  • [146] X.X. Qiu, M. E. Plesha, D.W. Meyer, ‘Stiffness matrix integration rules for contact-friction finite elements’, Comput Meth. Appl. Mech. Engrg., 93, 385-399 (1991).
  • [147] E. Rabinowicz, Friction and Wear of Materials, 2nd ed., Wiley, New York, 1995.
  • [148] K Runesson, M. Klisinski, R. Larsson, ‘Formulation and implementation of conditions for frictional contact', Eng Comput , 10, 3 14 (1993).
  • [149] N.J. Salamon, X.X. Tong, F.F. Mahmoud, ‘Effects of profile, roughness and friction on contacting bodies in compression’, Wear, 101, 205-218 (1985).
  • [150] A. F. Saleeb, K. Chen and T. Y. P. Chang, ‘An effective two-dimensional frictional contact model for arbitrary curved geometry’, Int. j. numer. methods eng., 37, 1297-1321 (1994).
  • [151] R.S. Sayles and T.R. Thomas, Thermal conductance of a rough elastic contact, Applied Energy, 2, 249-267(1976).
  • [152] R.S. Sayles and T.R. Thomas, ‘Measurments ©f the statistical microgeometry of enginnering surfaces’, J. Lubrication Technology Trans. ASME, 101, 409-418 (1979).
  • [153] J. C. J. Schellekens and R. de Borst, ‘On the numerical integration of interface elements’, Int. j. numer. methods eng.. 36, 43-66 (1993).
  • [154] J. C. J. Schellekens, ’Computational strategies for composite structures’, Dissertation, Delft University of Technology, Delft, 1992.
  • [155] A. P S. Selvadurai and M. C. Au, ‘Non-linear interactions in flat anchors embedded in geological media’, in C. S. Desai et al., (eds.), Constitutive Laws for Engineering Materials. Theory and Applications, vol. II, pp. 1093 1107, Elsevier, New-York, 1987.
  • [156] K.G. Sharma and C. S. Desai, ‘Analysis and implementation of thin-layer element for interface and joints’, J. Engrg. Mech.. ASCE, 118, 2442-2462 (1992).
  • [157] I.A. Shtaerman, Contact Problem of the theory of Elasticity, GIT-TL, Moscov, 1949. (In Russian)
  • [158] S.N. Shoukry, ‘A mathematical model for the stiffness of fixed joints’, in: Proc. of the NUMETA '85 ConfSwansea, 7-11 January 1985, pp. 851 858, 1985.
  • [159] J.C. Simo, T.R.J. Hughes, Elastoplasticity and Viscoplasticity. Computational Aspects, Springer- Verlag, Berlin, (to be published)
  • [160] J.C. Simo, T.A. Laursen, ‘An augmented lagrangian treatment of contact problems involving friction’, Comput. Struct., 42, 97-116 (1992).
  • [161] K. Skalski, ’Contact problem in elastic-plastic range’, in: Mechanics of Contact Surface (Ed. Z. Mr6z), Ossolineum, Wroclaw, pp. 211-273, 1988.
  • [162] I. M. Smith and D. J. Kidger, ‘Elastoplastic analysis using the 14-node brick element family’, Int. j. numer. methods eng., 35, 1263-1275 (1992).
  • [163] M.F. Snyman, W.W. Bird, J.B., Martin, ‘A simple formulation of a dilatant joint element governed by Coulomb friction’, Eng. Comput., 8, 215-229 (1991).
  • [164] C. O. Spivey and D. A. Tortorelli, ‘Tangent operators, sensitivity expressions, and optimal design of non-linear elastica in contact with applications to beams’, Int. j. numer. methods eng., 37, 49-73 (1994).
  • [165] H. So, D.C. Liu, An elastic-plastic model for the contact of anisotropic rough surfaces, Wear, 146, 201-218 (1991).
  • [166] E. A. de Souza Neto, K. Hashimoto, D. Peric and D. R. J. Owen, ‘A phenomenological models for frictional contact of coated steel sheets’, Proc. 2nd Int. Conf. Numerical Simulation of 3-D Sheet Metal Forming Processes, 31 Aug.-2 Sept., Isehara (Japan), pp. 239-250, 1993.
  • [167] G. P. Steven, ‘Penalty method constraints for mesh grading in two dimensional elasticity’, Commun. applied, numer. methods, 1, 219-232 (1985).
  • [168] G. Swan, ‘Determination of stiffness and other joint properties from roughness measurments’, Rock Mech. Rock Engng., 16, 19-38, (1983).
  • [169] G. Swan and S. Zongqi, ‘Prediction of shear behaviour of joints using profiles’, Rock Mech. Rock Engng., 18, 183-212 (1985).
  • [170] D. Tabor, The Hardness of Metal, Oxford University Press, 1951.
  • [171] A.G. Tangena, P.J.M. Wijnhoven, ‘Finite element calculations on the influence of surface roughness on friction’, Wear, 27. 601-607 (1985).
  • [172] A. Taniguchi, M. Tsutsumi, Y. Ito, ‘Treatment of contact stiffness in structural analysis’, Bull.of the JSME, 27, 601-607 (1984).
  • [173] R. L. Taylor, ‘On completness of shape functions for finite element analysis’, Int. j. numer. methods eng., 4, 17-22 (1972);
  • [174] T.R. Thomas, Rough Surfaces, Longman, London. 1982.
  • [175] T.R. Thomas and R.S. Sayles, ‘Stiffness of machine tool joints: A random-process approach’, J. of Engineering for Industrie, Trans ASME, February 1977, 250-256 (1977).
  • [176] W.W. Tworzydlo, W. Cecot, J. T. Oden and C. H. Yew, ’New asperity based models of contact and friction], in: Contact Problems and Surface Interactions in Manufacturing and Tnbological Systems, M.H. Attia and R. Komanduri, eds.. PED-Vol.67, TRIB-Vol.4, ASME, New-York, pp. 87-104, 1993.
  • [177] P. A. Vermeer and R. de Borst, ‘Non-associated plasticity for soils, concrete and rock’. Hervn, 29, (3), (1984).
  • [178] A. Villanueva-Leal, S. Hinduja. ‘Modelling the characteristics of interface by the finite element method’, Proc. Inst. Mech. Engrs., 198C, 9- 23 (19S4).
  • [179] A. Villanueva-Leal, “The modelling of characteristics of interface surfaces by the finite element method', Ph.D Thesis. The University of Manchester, July, 1980.
  • [180] D..J. Whitehouse and J.F. Archard, The properties of random surfaces in contact. Proc. Roy. Soc. London, A316, 97-121 (1970).
  • [181] D.J. Whitehouse and M.J. Phillips, Discrete properties of random surfaces, Phil. Trans. Roy Soc. Lond., A290, 267-298 (1978).
  • [182] D.J. Whitehouse and M.J. Phillips, Two-dimensional discrete properties of random surfaces, Phil. Trans. Roy. Soc. London, A305, 441-468 (1982).
  • [183] D.J. Whitehouse, Handbook of Surface Metrology, Institute of Physics Publishing, Bristol and Philadel¬phia, 1994.
  • [184] J.A. Williams, Engineering Tribology, Oxford University Press, Oxford, 1994.
  • [185] K. Willner and L. Gaul, A penalty approach for contact description by FEM based on interface physics, in: Proc. 2nd Int. Conf. Contact Mechanics II. M.H. Aliabadi and C. Alessandri, eds, Computational Mechanics Publicatons, Southampton, pp. 257-264, 1995.
  • [186] K. Willner and L. Gaul, ‘Contact description by FEM based on interface physics’, in: Proc. 4th Int. Conf. COMPLAS, D.R.J. Owen, E. Ohate and E. Hinton, eds., Pineridge Press, Swansea, pp. 884-891, 1997
  • [187] K. Willner, Elasto-plastic contact of rough surfaces, in: Proc. 3rd Int. Conf. Contact Mechanics III, M.H Aliabadi and A. Samartin, eds, Computational Mechanics Publicatons, Southampton, pp.13-22, 1997.
  • [188] P Wriggers, ‘On consistent tangent matrices for frictional contact problems’, in: Proc. of the Conf. NUMETA 87, Swansea, pp. C15/1-C15/8, 1987.
  • [189] P. Wriggers, T. Vu-Van, Iv Stein, ‘Finite-element-formulation of large deformation impact-contact- problems with friction', Comput. Struct., 37, 319-331 (1990).
  • [190] P. Wriggers and C Miahe, 'Contact constrains within coupled thermomechanical analysis - A finite element model’, (Comput Methods Appt Mech. Engrg., 113,301-319 (1994).
  • [191] P. Wriggers and O. Scherf, Adaptive FEMs for contact problems in plasticity’, In: D. R. J. Owen, E. Oñate, Proc 4rd Int. Conf COMIPLAS. Barcelona, 3-6 April 1995, pp. 787-808, 1995.
  • [192] P. Wriggers, ‘Finite element algorithms for contact problems’, Archives of Computational Methods in Engineering, 2. 1-49 (1995).
  • [193j B.B. Yao, R.S. Rao, N. Kikuchi, ‘Experimental and numerical comparisons of friction contact in sheet stretching', in: Friction and Material Characterizations, Winter Annual Meeting of ASME, MD-Vol.10. Eds. I. Haque, J.E. Jackson. A.A. Tseng, J.L. Rose, pp. 47-53, The ASME, New York, 1989.
  • [194] G. Zavarise, B.A. Schrefler, P. Wriggers, ‘Consistent formulation for the thermomechanical contact based on microscopic interface laws, in: Proc. of the Third Inter. Conf. on Computational Plasticity, 6-10 April 1992, Barcelona, Spain, (Eds. D.R.J. Owen. E. Onate, R. Hinton), Pineridge Press, Swansea U.K., pp. 349-360, 1992.
  • [195] G. Zavarise and B.A. Schrefler, ‘Numerical analysis of microscopically elastic contact problems, in: Proc. 2nd Int. Contact Mechanics Int. Symp., M. Raous, M. Jean and J.J. Moreau, eds, Plenum Press, New-York, pp. 305 312, 1995.
  • [196] G. Zavarise and P Wriggers, ‘Elasto-plastic contact problems solved by the cross-constraints method*. In: D. R. J. Owen. E. Onate, Proc. jrd Int. Conf. COMPLAS. Barcelona, 3 6 April 1995, pp. 2261- 2270, 1995.
  • [197] G. Zavarise, P. Wriggers and B. A. Schreffler, ‘On augmented lagrangian algorithms for thermoine- chanicnl contact problems with friction’, Int. j. numer. methods eng., 38, 2929-29-19 (1995).
  • [198] Z.-H. Zhong and J Mackerle, ‘Static contact problems-a review’, Eng. Comput., 9. 3-37 (1992).
  • [199] Z.-H. Zhong. Finite Element Procedures for Contact-Impact Problems, Oxford University Press, Ox¬ford, 1993.
  • [200] Z.-H. Zhong and J. Mackerle, ‘Contact-impact problems: A review with bibliography’, Appl. Mcch. Rev., ASME. 47. (2), 55 76 (1994)
  • [201] Z.-H. Zhong and L. Nilsson, ‘Lagrange multiplier approach for evaluation of friction in explicit finite- elernent analysis', Commun. numer. methods eng., 10, 249-255 (1994).
  • [202] O. C. Zienkiewicz and K. Morgan, Finite Elements and Approximation, Wiley and Sons, New York, 1983.
  • [203] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, Vol.I: Basic Formulation and Linear Problems, McGr.aw-Hill, London, 1989.
  • [204] O C. Zienkiewicz, R.L. Taylor, The Finite Element Method, Vol.II: Solid and Fluid Mechanics and Non-linearity, McGraw-Hill, London, 1991.
  • [205] Z. Zmitrowicz, ‘A theoretical model of anisotropic dry friction’, Wear, 73, 9-39 (1981)
  • [206] Z. Zmitrowicz, ‘Mathematical descriptions of anisotropic friction’, Int. J. Solids Struct., 25, 837-862 (1989).
  • [207] Z. Zmitrowicz, ‘Constitutive modelling of anisotropic phenomena of friction, wear and frictional heat’, Zeszyty Naukowe IMP PAN, Gdansk, no. 381/1342/93, 1993.
  • [208] A. Zubelewicz, Z. Mroz, ‘Numerical simulation of rock burst processes treated as problems of dynamic instability’, Rock Mech. Rock Engng., 16, 253-274, (1983).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB4-0003-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.