PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania odpowiedzi układów rezonansowych na pobudzenie akustyczne i aerodynamiczne

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
W części pierwszej pracy badano odpowiedź rezonatora komorowego na pobudzenie akustyczne o małej i dużej amplitudzie. Badania te przeprowadzono na przykładzie oddziaływania fali płaskiej na prostopadłościenny rezonator komorowy z otworem kołowym o bardzo małej grubości. W analizie teoretycznej do obliczenia impedancji rezonatora wykorzystano metodę wariacyjną i dwa najczęściej stosowane rozkłady prędkości w płaszczyźnie otworu rezonatora: rozkład równomierny oraz rozkład uzyskany z rozwiązania równania Laplace`a w idealnym ośrodku nieściśliwym. W części doświadczalnej przeanalizowano dokładność metod pomiarowych wykorzystujących do rejestracji odpowiedzi rezonatora pomiar ciśnienia oraz zaproponowano metodę pomiarową umożliwiającą bezpośredni odczyt współczynnika dobroci. Druga część pracy dotyczy zagadnienia generacji oscylacji akustycznych przy aerodynamicznym pobudzeniu rezonatora. W części doświadczalnej zaprezentowano wyniki pomiarów częstotliwości i poziomu wzbudzonych oscylacji akustycznych dla dwóch typów rezonatorów o prostopadłościennym kształcie komory. W pierwszym przypadku był to rezonator z otworem prostokątnym, natomiast w drugim rezonator o kołowym kształcie otworu, dla którego wykonano pomiary częstotliwości rezonansowej i współczynnika dobroci przy pobudzeniu akustycznym. Trzecia część pracy poścwięcona jest problemowi genereacji dźwięku w rurociągu z zamkniętymi odnogami. Przeprowadzono badania dla trzech układów: rurociągu z pojedyńczą odnogą, rurociągu z odnogami współosiowymi o takiej samej długości oraz rurociągy z dwoma odnogami w konfiguracji typu "tandem"
Rocznik
Tom
Strony
3--233
Opis fizyczny
Bibliogr. 197 poz., rys. tab. wykr.
Twórcy
autor
  • Pracownia Akustyki Środowiska Zakład Problemów Eko-Budoownictwa Instytutu Podstawowych Problemów Techniki PAN
Bibliografia
  • [1] ADOBES A., AUDONNET I., LUZZATO E., Helmholtz resonators: a numerical package to optimize their design and control their implementation in engineering problems, Journal of Low Frequency Noise and Vibration, 9, 1990, 92-97.
  • [2] ALSTER M., Improved calculation of resonant frequencies of Helmholtz resonators, Journal of Sound and Vibration, 24, 1972, 63-85.
  • [3] ANDERSON, A.B., Dependence of „Pfeifenton” (pipe tone) frequency on pipe lenght, orifice diameter and gas discharge pressure, Journal of the Acoustical Society of America, 24, 1952, 675-681.
  • [4] BATCHELOR G.K., An introduction to fluid dynamics, Cambridge Press, 1967.
  • [5] BECHERT D.W., Sound absorption caused by vorticity shedding demonstrated with a jet flow, Journal of Sound and Vibration, 70, 1980, 389-405.
  • [6] BIES D., WILSON O., Acoustic impedance of a Helmholtz resonator at very high amplitude, Journal of the Acoustical Society of America, 29, 1957, 711-714.
  • [7] BILANIN A.J., COVERT E.E., Estimation of possible excitation frequencies for shallow rectangular cavities, American Institute of Aeronautics and Astronautics Journal, 11, 1973,347-351.
  • [8] BJORNO L., Nonlinear acoustics, Acoustic and Vibration Progress, Vol. 2, Chapman and Hall, London, 1976.
  • [9] BRUGGEMAN J.C., Flow-Induced Pulsations in Pipe Systems, Ph.D. Thesis, Eindhoven University of Technology, 1987.
  • [10] BRUGGEMAN J.C., HIRSCHBERG A., VAN DONGEN M.E., WIJNANDS A.P., GORTER J., Flow induced pulsations in gas transport systems: analysis of the influence of dosed side branches, ASME Journal of Fluids Engineering, 111, 1989,484 491.
  • [11] BRUGGEMAN J.C., HlRSCHBERO A., Van Dongen M.E., WUANANDS A.P., Self-sustained aero-acoustic pulsations in gas transport systems: experimental study of the influence of closed side branches, Journal of Sound and Vibration, 150, 1991,371-393.
  • [12] BUKOWSKl J., Hydro-aeromechanika, Wydawnictwo Politechniki Warszawskiej, Warszawa, 1957.
  • [13] CARGILL A.M., Low-frequency acoustic radiation from a jet pipe - a second order theory, Journal of Sound and Vibration, 83, 1982, 339-354.
  • [14] CARGILL A.M., Low-frequency sound radiation and generation due to the interaction of unsteady flow with a jet pipe, Journal of Fluid Mechanics, 121, 1982, 59-105.
  • [15] CHANAUD R.C., Effects of geometry on the resonance frequency of Helmholtz resonators, Journal of Sound and Vibration, 178, 1994, 337-348.
  • [16] CHARWAT A.F., Roos J.N., DEWEY F.C., HlTZ J.A., An investgation of separated flows, Part 1, The pressure field, Journal of Aerospace Sciences, 28, 1961, 457— 470.
  • [17] CHARWAT A.F., WALKER B.E., The velocity field near the orifice of a Helmholtz resonator in grazing flow, UCLA-Eng-81, 1981.
  • [18] COLTMAN J.W., Sounding mechanism of sound production in organ pipes, Journal of the Acoustical Society of America, 44, 1968, 983-992.
  • [19] COLTMAN J.W., Jet drive mechanisms in edge tone and organ pipes, Journal of the Acoustical Society of America, 60, 1976, 725-733.
  • [20] COVERT E.E., An approximate calculation of the onset velocity of cavity oscillations, American Institute of Aeronautics and Astronautics Journal, 8, 1970, 2189-2194.
  • [21] CREMER L., IsiNG H., Die selbsterregtcn Schwingungen von Orgelpfeifen, Acustica, 19, 1967/68, 143-153.
  • [22] CRIGHTON D.G., Acoustics as a branch of fluid mechanics, Journal of Fluid Mechanics, 106, 1981, 261-298.
  • [23] CRIGHTON D.G., The jel edge-tonc feedback cycle; linear theory for the operating stages. Journal of fluid Mechanics, 234, 1992, 361-391.
  • [24] CROW S.C., Aerodynamic sound emission as a singular perturbation problem, Studies in Applied Mathematics, 49, 1970, 21-44.
  • [25] CUMMINGS A., Acoustics of a cider bottle. Applied Acoustics, 5, 1972, 161-170.
  • [26] CUMMINGS A., Acoustics of a wine bottle, Journal of Sound and Vibration, 31, 1973,331-343.
  • [27] CUMMINGS A., Eversman W., High amplitude acoustic transmission through duct terminations: theory, Journal of Sound and Vibration, 91, 1983, 503-518.
  • [28] CUMMINGS A., Acoustic nonlinearities and power losses at orifices, American Institute of Aeronautics and Astronautics Journal, 22, 1984, 768-792.
  • [29] CUMMINGS A., Transient and multiple frequency sound transmission through perforated plates at high amplitude, Journal of the Acoustical Society of America, 79, 1986, 942-951.
  • [30] CZARNECKI S., Utilization of nonlinear properties of resonators for improving acoustic conditions in rooms, Proceedings of the 6th International Congress on Acoustics, Tokyo, Japan, 1968, 197-200.
  • [31] CZARNECKI S., Nieliniowe wlasnosci pochlaniajqce akustycznych ustrojow rezonansowych, Archiwum Akustyki, 4, 1969, 37-49.
  • [32] CZARNECKI S., Wlasnosci tlumiqce rezonatorow Helmholtza z uwzgl^dnieniem warunkow otaczajqcego osrodka, Archiwum Akustyki, 1, 1966, 6-23.
  • [33] CZARNECKI S., Wspdloddziatywanie rezonatorow Helmholtza z uwzgl^dnieniem warunkow akustycznych otaczajqcego osrodka, Prace Instytutu Automatyki PAN, Warszawa, 1966.
  • [34] DAVll s P.O., Practical (low duct acoustics, Journal of Sound and Vibration, 124, 1988,95-115.
  • [35] IlAVII S P.O. Ill NTO COI LHO J.L, BHATTACHARYA M., Reflection coefficients for an un Hanged pipe How, Journal of Sound and Vibration, 72, 1980, 543-546.
  • [36] DICKEY N.S., SELAMET A., Helmholtz resonators: one-dimensional limit for small cavity length-to-diameter ratios, Journal of Sound and Vibration, 195, 1996, 512-517.
  • [37] DICKEY N.S., SELAMET A., Acoustic nonlinearity of a circular orifice: an experimental study of the instantaneous pressure/flow relationship, Noise Control Engineering Journal, 46, 1998, 97-107.
  • [38] DlSSELHORST J.H., Wijngaarden L., Flow in the exit of open pipes during acoustic resonance, Journal of Fluid Mechanics, 91, 1980, 293-319.
  • [39] DOAK P.E., On the interdependence between acoustic and turbulent fluctuating motions in a moving fluid, Journal of Sound and Vibration, 19, 1971, 221-225.
  • [40] DOAK P.E., Analysis of internally generated sound in continuous materials: 2. A critical review of the conceptual adequacy and physical scope of existing theories of aerodynamic noise, with special reference to supersonic jet noise, Journal of Sound and Vibration, 25, 1972, 263-335.
  • [41] DOAK P.E., Analysis of internally generated sound in continuous materials: 3. The momentum potential field description of fluctuating fluid motion as a basis for a unified theory of internally generated sound, Journal of Sound and Vibration, 26, 1973,91-120.
  • [42] DOAK P.E., Fundamentals of aerodynamic sound theory and flow duct acoustics, Journal of Sound and Vibration, 28, 1973, 527-561.
  • [43] DOAK P.E., Momentum potential theory of energy flux carried by momentum fluctuations, Journal of Sound and Vibration, 131, 1989, 67-90.
  • [44] EAST L.F., Aerodynamically induced resonance in rectangular cavities, Journal of Sound and Vibration, 3, 1966, 277-287.
  • [45] ELDER S.A., On the mechanism of sound production in organ pipes, Journal of the Acoustical Society of America, 54, 1973, 1554-1564.
  • [46] ELDER S.A., Self-excited depth-mode resonance for wall-mounted cavity in turbulent flow. Journal of the Acoustical Society of America, 64, 1978, 877-890.
  • [47] ELDER S A , I on ell oscillations of a separated shear layer with application to cavity How tone effects, Journal of the Acoustical Society of America, 67, 1980, 774-781.
  • [48] ELDER S.A., FARABEE T.M., Demetz F.C.. Mechanisms of flow-excited tones at low Mach number. Journal of the Acoustical Society of America, 72, 1982, 532-549.
  • [49] ELDER S.A., Comments on „Sound generation by flow over relatively deep cylindrical cavities”, Journal of the Acoustical Society of America, 80, 1986, 1530-1531.
  • [50] ELDER S.A., The mechanism of sound production in organ pipes and cavity' resonators, Journal of the Acoustical Society of Japan, 13, 1992, 11- 23.
  • [51] ENGEL Z., Metody aktywne w akustyce - marzenia czy rzeczywistosc, Materialy XLII Otwartego Seminarium z Akustyki, Warszawa-Bialowierza. 1995, 25-36.
  • [52] FABRE B., HIRSCHBERG A., WUNANDS A.P., Vortex shedding in steady oscillation of a flue organ pipe, Acta Acustica, 82, 1996, 863-877.
  • [53] FAHY F.J., SCHOFIELD C., A note on the interaction between a Helmholtz resonator and an acoustic mode of an enclosure, Journal of Sound and Vibration, 72, 1980,365-378.
  • [54] FFOWCS WILLIAMS J.E., Hydrodynamic noise, Annual Review of Fluid Dynamics, 1, 1972, 197-222.
  • [55] FFOWCS Williams J.E., Aeroacoustics, Annual Review of Fluid Dynamics, 9, 1977,447-468.
  • [56] FFOWCS WILLIAMS J.E., Sound sources in aerodynamics - fact and fiction, American Institute of Aeronautics and Astronautics Journal, 20, 1982, 307-315.
  • [57] FiCHTENHOLZ G.M., Rachunek rozniczkowy i calkowy, PWN, Warszawa, 1980.
  • [58] FLETCHER N.H., Jet drive mechanism in organ pipes, Journal of the Acoustical Society of America, 60, 1976, 481-483.
  • [59] FLETCHER N.H., Sound production by organ flue pipes, Journal of the Acoustical Society of America. 60. 1976, 926-936.
  • [60] FLETCHER N.H., Air flow and sound generation in musical wind instruments, Annual Review of Fluid Mechanics, 11, 1979, 123-146.
  • [61] FLETCHER N.H., Thwaites S., Wave propagation on a perturbed jet, Acustica, 42, 1979,323-334.
  • [62] FLYNN K.P., PANTON R.L., The interaction of Helmholtz resonators in a row when excited by a turbulent boundary layer, Journal of the Acoustical Society of America. 87, 1990, 1482-1488.
  • [63] FREYMUTH P., On transition in a separated laminar boundary layer, Journal of Fluid Mechanics. 25, 1966, 683-704.
  • [64] GOLDSTEIN M E., Aeroacoustics, Me Graw-Hill, 1976.
  • [65] GRADSZTEJN I.S., RYZYK I.M. (rpaamTeihi M.C., Pldkhk M.M.), Ta6;imibi HHTerpajtoB, cyvtM, paaoB n npoH3Be.neHHH, TacyztapcTBeHHoe M3,a,aTejibCTBO 0H3HKO-MaTeMaTHHecKOH JlmepaTypbi, MocKBa, 1962.
  • [66] GRAF H R., DURGIN W.W., Measurement of the nonsteady flow field in the opening of a resonating cavity excited by grazing flow, Journal of Fluids and Structures, 7, 1993, 387-400.
  • [67] GRAF H.R., ZIADA S., Flow induced acoustic resonance in closed side branches: an experimental determination of the excitation source, Proceedings of Symposium on Flow-Induced Vibration and Noise, 1992, Vol. 7, 63-80.
  • [68] HANEY W.L., SHANG J.S., Analyses of pressure oscillations in an open cavity, American Institute of Aeronautics and Astronautics Journal, 18, 1980, 892-898.
  • [69] HELLER H.H., Holmes D.G., Covert E.E., Flow-induced pressure oscillations in shallow cavities, Journal of Sound and Vibration, 18, 1971, 545-553.
  • [70] HOLGER D.K., WILSON T.A., BEAVERS G.S., Fluid mechanics of the edgetone, Journal of the Acoustical Society of America, 62, 1977, 1116-1128.
  • [71] HOLGER D.K., WILSON T.A. BEAVERS G.S., The amplitude of edgetone sound, Journal of the Acoustical Society of America, 67, 1980, 1507-1511.
  • [72] HOWE M.S . Attenuation of sound in a low Mach number nozzle flow, Journal of Fluid Mechanics, 91, 1979, 209 229.
  • [73] HOWE M.S., The- dissipation of sound at an edge, Journal of Sound and Vibration, 70, 1980, 407-411.
  • [74] HOWE M.S., On the absorption of sound by turbulence and other hydrodynamic flows, IMA Journal of Applied Mathematics, 32, 1984, 187-209.
  • [75] HOWE M.S., Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute, Journal of Fluid Mechanics, 71, 1975,625-673.
  • [76] HOWE M.S., On the Helmholtz resonator, Journal of Sound and Vibration, 45, 1976, 427-440.
  • [77] HOWE M.S., The influence of mean shear on unsteady aperture flow, with application to acoustical diffraction and self-sustained cavity oscillations, Journal of Fluid Mechanics, 109, 1981, 125-146.
  • [78] HOWE M.S., Edge, cavity and aperture tones at very low Mach numbers, Journal of Fluid Mechanics, 330, 1997, 61-84.
  • [79] HOWE M.S., Low Strouhal number instabilities of flow over apertures and wall cavities, Journal of the Acoustical Society of America, 102, 1997, 772-780.
  • [80] INGARD U., On the theory and design of acoustic resonators, Journal of the Acoustical Society of America, 25, 1953, 1037-1061.
  • [81] INGARD U., LA0ATE S., Acoustic circulation effects and the nonlinear impedance of orifices, Journal of the Acoustical Society of America, 22, 1950, 211-218.
  • [82] INGARD U., 1SING H., Acoustic nonlinearity of an orifice, Journal of the Acoustical Society of America, 42, 1967, 6-17.
  • [83] INGARD U., Nonlinear distortion of sound transmitted through an orifice, Journal of the Acoustical Society of America, 48, 1970, 32-33.
  • [84] INGARD U., SlNGHAL V.K., Sound attenuation in turbulent pipe flow, Journal of the Acoustical Society of America, 55, 1974, 535-538.
  • [85] INGARD U., SlNGHAL V.K., Flow excitation and coupling of acoustic modes of a side-branch cavity in a duct, Journal of the Acoustical Society of America, 60, 1976, 1213-1215.
  • [86] IVARSSON A., Noise-induced hearing loss in the car industry - a retrospective investigation covering 23 years, Proceedings of International Conference on Noise and Vibration Control, St. Petersburg, Russia, 1993, Vol. 2, 249-253.
  • [87] JENVEY P.L., The sound power from turbulence: a theory of exchange of energy between the acoustic and non-acoustic fields, Journal of Sound and Vibration, 131, 1989, 37-66.
  • [88] JUNGOWSKI W.M., BOTROS K.K., STUDZINSKI W., Cylindrical side-branch as tone generator, Journal of Sound and Vibration, 131, 1989, 265-285.
  • [89] KELLER, J.J., ESCUDIER M.P., Flow-excited resonances in covered cavities, Journal of Sound and Vibration, 86, 1983, 199-226.
  • [90] KELLER J.J., Non-linear self-excited acoustic oscillations in cavities, Journal of Sound and Vibration, 94, 1984, 397-409.
  • [91] KHOSROPOUR R., MILLET P., Excitation of Helmholtz resonator by an air jet, Journal of the Acoustical Society of America, 88, 1990, 1211-1221.
  • [92] KIEL D.E., FOY C.E., Tone generation in stepped side-branches, Proceedings of International Conference on Noise and Vibration Control, St. Petersburg, Russia, 1993, Vol. 3, 161-168.
  • [93] KINSLER, L.E., FREY, A.R., Fundamentals of acoustics, 2nd ed., Wiley, New York, 1962.
  • [94] KOOK H., Mongeau L., Brown D.V., Zorea S.I., Analysis of the interior pressure oscillations induced by flow over vehicle openings, Noise Control Engineering Journal, 45, 1997, 223-234.
  • [95] KRIESELS P C., PETERS M.C., IIIRSCHBERG A., WUNANDS A.P., IAFRATI A., RiCCARD! G., PlVA R., BltUGGEMAN J.C., High-amplitude vortex-induced pulsation in a gas transport system, Journal of Sound and Vibration, 184, 1995, 341-386
  • [96] KUKES A.F.,. INGARD U., A note on acoustic boundary dissipation due to vim oslty. Journal of the Acoustical Society of America, 25, 1953, 798-799.
  • [97| KUNTZ H., PRYDZ R., BALENA F., Development and testing of cabin sidewall acoustic resonators for the reduction of cabin tone level in prop fan-powered aircraft, Noise Control Engineering Journal, 37, 1991, 129-142.
  • [98J LAMB H., Hydrodynamics, Cambridge University Press, 1932.
  • [99] LANDAU L.D., LlFSHlTZ E.M., Fluid mechanics, Pergamon Press, London, 1959.
  • [100] LlGHTHILL M.J., On sound generated aerodynamically, I: General theory', Proceedings of Royal Society of London, Series A, Vol. 211, 1952, 564-587.
  • [101] LlGHTHILL M.J., On sound generated aerodynamically, II: Turbulence as a source of sound, Proceedings of the Royal Society of London, Series A, Vol. 222, 1954, 1-32.
  • [102] LlGHTHILL M.J., Sound generated aerodynamically, Proceedings of the Royal Society of London, Series A, Vol. 267, 1962, 147-182.
  • [103] LlLLEY G.M., Generation of sound in a mixing region, Lockheed Aircraft Company, Progress report on contract F-33615-71 -C-l 663, 1972.
  • [104] MALECKI I., Teoria fal i uktadow akustycznych, PWN, Warszawa, 1964.
  • [105] MALECKI I., ENGEL Z., LIPOWCZAN A., SADOWSKI J., Problems of noise in Poland on the way to european integration, Proceedings of 10th International Conference on Noise Control, Warsaw, 1995, 11-39.
  • [106] MASON J.M., FAHY F.J., The use of acoustically tuned resonators to improve the sound transmission loss of double-panel partitions, Journal of Sound and Vibration, 124, 1988, 367-379.
  • [107] MASSENZIO M., BLAISE A., LESUEUR C., Theoretical and experimental studies on acoustical pressure generated by airflow over a complex cavity, Proceedings of International Symposium ..Transport Noise and Vibration”, St. Petersburg, Russia, 1994, 121-124.
  • [108] MAST T.D., PIERCE A.D., Describing-function theory for flow excitation of resonators. Journal of the Acoustical Society of America, 97, 1995, 163-172.
  • [109] MEISSNER M., Zjawisko nieliniowości przy oddziaływaniu cisnienia akustycznego na rezonator Helmholtza, Prace Instytutu Podstawowych Problemow Techniki, 19/1994.
  • [110] MEISSNER M., Absorption properties of Helmholtz resonators at high-amplitude incident sound, zloione do czasopisma Acta Acustica.
  • [111] MEISSNER M., Mechano-acoustic feedback in the case of an interaction between a sound source and a resonance system, Archives of Acoustics, 3, 1983, 235-248.
  • [112] MEISSNER M., Mutual interaction between a speaker and a resonator as an example of mechanical-acoustic feedback, Proceedings of 4th Congress of the Federation of Acoustical Societies of Europe, Sandefjord, Norway, 1984, 185-188.
  • [113] MEISSNER M., Self-sustained deep cavity oscillations induced by grazing flow, Acustica, 62, 1987, 220-228.
  • [114] MEISSNER M., Generacja dzwięku o dyskretnej częstotliwosci przy opływie wnęki głębokiej przez strumień gazu, Prace Instytutu Podstawowych Problemow Techniki, 8/1991.
  • [115] MEISSNER M., Discrete sound induced by low Mach number flow over side branch deep cavity in a rectangular duct, Archives of Acoustics, 17, 1992, 287-305.
  • [116] MEISSNER M., Experimental investigation of discrete sound production in deep cavity exposed to airflow, Archives of Acoustics, 18, 1993, 131-156.
  • [117] MEISSNER M., Oscylacjc samowzbudne w rurociągu z zamkniętymi odgałęzieniami, Prace Instytutu Podstawowych Problemow Techniki, 18/1994.
  • [118] MEISSNER M , CZECHOWICZ M., Experimental investigation of flow-induced m mi in ii .i'IIImiIomh in piping system with closed branches. Applied Acoustics, 45, 1995, 359 375.
  • [II9| MEISSNER M., 1-low-excited acoustic pulsations in ducts with closed side brunches, Archives of Acoustics, 22, 1997, 153-167.
  • [120] MEISSNER M., Specific kind of acoustic modes induced by flow in duct with two closed side branches, zlozone do czasopisma Journal of Fluids and Structures.
  • [121] MEISSNER M., Noise of discrete frequency components generated by airflow over deep cavity. Proceedings of International Conference on Noise and Vibration Control, St. Petersburg, Russia, 1993, Vol. 1, 115-120.
  • [122] MEISSNER M., CZECHOWICZ M., Noise control in air transport systems: experimental study of flow-excited sound in pipeline with closed branches, Proceedings of 10th International Conference on Noise Control, Warsaw, 1995, 377-380.
  • [123] MEISSNER M., Generacja dzwięku o dyskretnych częstotliwośiach przy opływie wnęki przez strumień gazu, Materialy XXXII Otwartego Seminarium z Akustyki, Krakow, 1985, 395-398.
  • [124] MEISSNER M., Zjawisko oscylacji samowzbudnych przy opływie wnęki głębokiej, Materiały XII Sympozjum „Drgania w układach fizycznych”, Poznań-Błażejewko, 1986, 197-198.
  • [125] MEISSNER M., Analiza zmian częstotliwści i poziomu składowych dyskretnych wytwarzanych przez strumien opływający wnękę głęboką, Materiały XXXIX Otwartego Seminarium z Akustyki, Kraków, 1992, 209-212.
  • [126] MEISSNER M.-, Wpływ zewnętrznego pola akustycznego na pochłanianie dzwięku przez rezonator Helmholtza, Materiały XL Otwartego Seminarium z Akustyki, Rzeszów-Polańczyk, 1993, 249-252.
  • [127] MEISSNER M., Wpływ impedancji rurociqgu z zamkniętymi odgałęzieniami na zjawisko wytwarzania oscylacji przepływowo-rezonansowych, Materiały XLII Otwartego Seminarium z Akustyki, Warszawa-Biatowieża, 1995, 89-92.
  • [128] MEISSNER M., RANACHOWSK! Z., Generacja i propagacja wzorcowych impulsów emisji akustyczncj, Pracc Instytutu Podstawowych Problemow Techniki, 36/1992.
  • [129] MICHALKE A., On spatially growing disturbances in an inviscid shear layer, Journal of Fluid Mechanics, 23, 1965, 521-544.
  • [130] MILES J.W., On the distributed motion of a plane vortex sheet, Journal of Fluid Mechanics, 4, 1958, 538-552.
  • [131] MONKEWITZ P.A., NGUYEN-VO N., The response of Helmholtz resonators to external excitation. Part 1. Single resonators, Journal of Fluid Mechanics, 151, 1985, 477-497.
  • [132] MORSE P.M., FESHBACH H., Methods of theoretical physics, Me Graw-Hill, New York, 1953.
  • [133] MORSE P.M., INGARD K.U., Theoretical acoustics, Me Graw-Hill, New York, 1968.
  • [134] MUNT R.M., The interaction of sound with a subsonic jet issuing from a semi- infinite cylindrical pipe, Journal of Fluids Mechanics, 83, 1977, 609-640.
  • [135] MUNT R.M., Acoustic transmission properties of a jet pipe with subsonic jet flow: I, cold jet reflection coefficient, Journal of Sound and Vibration, 142, 1990,413-436.
  • [136] MÖSER M., Aktive Kontrolle einfacher, selbsterregter Resonatoren, Acustica, 69, 1989, 175-184.
  • [137] NELSON P.A., HALLIWELL N.A., DOAK P.E., Fluid dynamics of a flow excited resonanse, part I: experiment, Journal of Sound and Vibration, 78, 1981, 15-38.
  • [138] NELSON P.A., HALLIWELL N.A., DOAK P.E., Fluid dynamics of a flow excited resonanse, part II: flow acoustic interaction, Journal of Sound and Vibration, 91, 1983, 375-402.
  • [139] NIEWCZAS B., ZABIEGAJ W., Reduction of flow generated noise, Proseedings of 10th International Conference on Noise Control, Warsaw, 1995, 277-288.
  • [140] NOLLE A.W., Small-signal impedance of short tubes, Journal of the Acoustical Society of America, 25, 1953, 32-39.
  • [141] ORHING S Calculations of self-excited impinging jet flow, Journal of Fluid Mi l Ininli'.i, 163, 1986, 69-98.
  • [142] PAN Y.S., Perturbation solution of Navier-Stokes equation and its relation to the I Ighthill—Curie solution of aerodynamic sound, Journal of the Acoustical Society of America, 58, 1975, 794-799.
  • [143J PANTON R.L., MILLER J.M., Resonant frequencies of cylindrical Helmholtz resonators, Journal of the Acoustical Society of America, 57, 1975, 1533-1535.
  • [144] PANTON R.L., GOLDMAN A.L., Correlation of nonlinear orifice impedance, Journal of the Acoustical Society of America, 60, 1976, 1390-1396.
  • [145] PaNTON R.L., MILLER J.M., Excitation of a Helmholtz resonator by turbulent boundary layer, Journal of the Acoustical Society of America, 58, 1975, 800-806.
  • [146] PANTON R.L., Effect of orifice geometry on Helmholtz resonator excitation by grazing flow, American Institute of Aeronautics and Astronautics Journal, 28, 1990, 60-65.
  • [147] PARTHASARATHY S.P., CHO Y.I., BACK L.H., Sound generation by flow over relatively deep cylindrical cavities, Journal of the Acoustical Society of America, 78, 1985, 1785-1795.
  • [148] PARTHASARATHY S.P., KWACK E.Y., BACK L.H., Replay to ‘Comments on „Sound generation by flow over relatively deep cylindrical cavities", Journal of the Acoustical Society of America, 80, 1986, 1531-1532.
  • [149] PETERS M.C., Aeroacoustic sources in internal flows, Ph.D. Thesis, Eindhoven University of Technology, 1993.
  • [150] PETERS M.C., HlRSCHBERG A., Acoustically induced periodic vortex shedding at sharp edged open channel ends: simple vortex models, Journal of Sound and Vibration, 161, 1993, 281-299.
  • [151] PHILLIPS O.M., On the sound generated by turbulent shear layers, Journal of Fluid Mechanics, 9, 1960, 1-28.
  • [152] PlMENTA A., SOUSA-UVA A., Leal A., Program for the preventation of hearing losses caused by industrial noise in a commercial airline; environmental characterization, Proceedings of International Conference on Noise and Vibration Control, St. Petersburg. Russia, 1993, Vol. 2, 261-266.
  • [153] POLLACK M.L., The acoustic internal end correction, Journal of Sound and Vibration. 67, 1979, 558-561.
  • [154] POLLACK M.L., Flow-induced tones in side-branch pipe resonators, Journal of the Acoustical Society of America, 67, 1980, 1153-1156.
  • [155] POWELL A., Vortex sound, University of California, Department of Engineering, Report 61-71, 1961.
  • [156] POWELL A., Theory of vortex sound, Journal of the Acoustical Society of America, 36, 1964, 177-195.
  • [157] POWELL A., On the edgetone, Journal of the Acoustical Society of America, 33, 1961,395-409.
  • [158] POWELL A., Vortex action in edgetones, Journal of the Acoustical Society of America, 34, 1962, 163-166.
  • [159] PRANDTLL., Dynamika przeplywow, PWN, Warszawa, 1956.
  • [160] PRYDZ R.A., WIRT L.S., Kuntz H.L., Transmission loss of a multilayer panel with internal tuned Helmholtz resonators, Journal of the Acoustical Society of America, 87, 1990, 1597-1602.
  • [161] RAYLEIGH J. W., Theory of sound, Dover Publication, 1945.
  • [162] ROCKWELL D., Knisely C., The organized nature of flow impingement upon a corner, Journal of Fluid Mechanics, 93, 1979, 413-432.
  • [163] ROCKWELL D., Prediction of oscillation frequencies for unstable flow past cavities, ASME Journal of Fluids Engineering, 99, 1977, 294-300.
  • [164] ROCKWELL D., NAUDASCHER E., Review – self-sustaining oscillations of flow past cavities, ASME Journal of Fluids Engineering, 1000, 1978, 152-165.
  • [165] ROCKWELL D., NAUDASCHER E., Self-sustained ossilations of impinging free shear layers, Annual Review of Fluid Mechanics, 11, 1979,67-94.
  • [166] ROCKWELL D., Oscillations of impinging shear layers American Institute of Aeronautics and Astronautics Journal, 21, 1983,645-664.
  • [167] RONNENBERGER D., AHRENS C.D., Wall shear stress caused by small amplitude perturbations of turbulent-layer flow: an experimental investigation. Journal of Fluid Mechanics, 83, 1977,433-464.
  • [168| ROSSITER J.E., Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds, RAE Report No. 64037, 1964.
  • [169] SAFFMAN P.G., On the formation on vortex rings, Studies in Applied Mathematics. 54, 1975,261-268.
  • [170] SALIKUDDIN M., AHUJA K.K., Acoustic power dissipation on radiation through duct terminations: experiments, Journal of Sound and Vibration, 91, 1983, 479-502.
  • [171] SALIKUDDIN M., Acoustic characteristics of closed cavity resonators for screech liner design, Proceedings of International Conference on Noise and Vibration Control, St. Petersburg, Russia, 1993, Vol. 3, 199-212.
  • [172] SAROHIA V., Experimental investigation of oscillations in flow over shallow cavities, American Institute of Aeronautics and Astronautics Journal, 15, 1977, 984-991.
  • [173] SCHLICHTING EL, Boundary' layer theory, Pergamon Press, London, 1955.
  • [174] SCHUMACHER R.T., Self-sustained oscillations of organ flue pipes: an integral equation solution, Acustica, 39, 1978, 225-238.
  • [175] SELAMET A., DICKEY N.S., NOVAK J.M., Theoretical, computational and experimental investigation of Helmholtz resonators with fixed volume: lumped versus distributed analysis, Journal of Sound and Vibration, 187, 1995, 358-367.
  • [176] SHAKKOTTAI P., KWACK E.Y., CHO Y.I., BACK L.H., High-intensity tone generation by aeroacoustic sources, Journal of the Acoustical Society of America, 82, 1987, 2075-2085.
  • [177] SHOW L.L., Suppression of aerodynamically induced cavity pressure oscillations, Journal of the Acoustical Society of America, 66, 1979, 880-884.
  • [178] SIVIAN L.J., Acoustic impedance of small orifices, Journal of the Acoustical Society of America, 7, 1935, 94-101.
  • [179] STINSON M.R., SHAW A.G., Acoustic impedance of small cicular orifices in thin plates, Journal of the Acoustical Society of America, 77, 1985, 2039-2042.
  • [180] SREDNIAWA B„ Hydrodynamika i teoria spr^zystosci, PWN, Warszawa, 1977.
  • [181] TAM C.K., BLOCK P.J., On the tones and pressure oscillations induced by flow over rectangular cavities, Journal of Fluid Mechanics, 89, 1978, 373-399.
  • [ 182] TANG Y.P., ROCKWELL D., Instaneous pressure fields at a corner associated with vortex impingement, Journal of Fluid Mechanics, 126, 1983, 187-204.
  • [183] TANG P.K., SIRIGANO W.A., Theory of generalized Helmholtz resonator, Journal of Sound and Vibration, 26, 1973, 247-262.
  • [184] THOMPSON M.C., HOURIGAN K., WELSH M.C., Acoustic sources in a tripped flow past resonator tube, American Institute of Aeronautics and Astronautics Journal, 30, 1992, 1484-1491.
  • [185] THURSTON G.B., MARTIN C.E., Periodic fluid flow through circular orifices, Journal of the Acoustical Society of America, 25, 1952, 26-31.
  • [186] THURSTON G.B., HARGROVE L.E., COOK W.D., Nonlinear properties of cicular orifices, Journal of the Acoustical Society of America, 29, 1957, 992-1001.
  • [187] THURSTON G.B., Nonlinear acoustic properties of orifices of varied shapes and edge conditions, Journal of the Acoustical Society of America, 30, 1958, 452-455.
  • [188] W'ALERIAN E., Description of noise propagation in a builit-up area, Institute of Fundamental Technological Research Reports, 29/1995.
  • [189] WALKER B.E., CHARWAT A.F., Correlation of the effects of grazing flow on the impedance of Helmholtz resonators, Journal of the Acoustical Society of America, 72. 1982, 550-555.
  • [190] WU J., RUDNICKI I., Measurements of the nonlinear tuning curves of Helmholtz resonators. Jounral of the Acoustical Society of America, 80, 1986, 1419- 1422.
  • [191] WYSOCKI J., Mechanika płynów, PWN, Warszawa, 1967.
  • [192] YAKHONTOV V.I., MELNIKOV V.N., Calculation and application of compact bioailhuml mufllcrs for reducing aerodynamic noise, Proceedings of International Conference on Noise and Vibration Control, St. Petersburg, Russia, 1993, Vol. 3,223-225.
  • [193] YOSHIKAWA S., SANEYOSHI j.. Feedback excitation mechanism in organ pipes, Journal of the Acoustical Society ofJapan, 1, 1980, 175-191.
  • [194] ZlADA S., ROCKWELL D., Vortex-leading-edge interaction, Journal of Fluid Mechanics, 118, 1982,79-107.
  • [195] ZIADA S., BÜHLMANN E.T., Self-exited resonances of two side-branches in close proximity, Journal of Fluids and Structures, 6, 1992, 583-601.
  • [196] ZiNN B.T., A theoretical study of non-linear damping by Helmholtz resonators, Journal of Sound and Vibration, 13, 1970, 347-356.
  • [197] ŻYSZKOWSKl Z., Podstawy elektroakustyki, WNT, Warszawa, 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB4-0001-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.