PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Opis deformacji plastycznej metali z efektami mikropasm ścinania

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Na podstawie analizy aktualnego stanu badań na temat hierarchii procesów poślizgu, zlokalizowanych form odkształcenia plastycznego w monokryształach, fizycznej natury wielopozionowej hierarchii pasm ścinania oraz ich efektów w polikryształach - przedstawiono motywację fizykalną i podstawy heurystyczne proponowanego opisu teoretycznego. Sformułowano nowe hipotezy: o rozszerzeniu pojęcia reprezentatywnego elementu objętości, o obwiedni stanów plastycznych z mikropasmami ścinania (obwiedni mikropasm ścinania), o efekcie naroża plastycznego. Analizując problem uwzględnienia efektów mikropasm ścinania w kontynualnym opisie odkształcenia plastycznego, zaproponowano nowy model prędkości odkształcenia postaciowego generowanego przez mikropasma ścinania oraz określono makroskopowe miary gradientu prędkości, prędkości deformacji plastycznej oraz spinu plastycznego jako efekt uśrednienia po reprezentatywnym elemencie objętości przeciętym osobliwą powierzchnią ścięcia. Zaproponowano nowy opis konstytutywny plastyczności z efektami mikropasm ścinania w postaci modelu materiału sprężysto-plastycznego z dwiema powierzchniami granicznymi. Na zakończenie przedstawiono przykład identyfikacji proponowanego modelu płynięcia plastycznego z udziałem mikropasm ścinania. Wykorzystując dostępne wyniki obserwacji doświadczalnych dla próby kanalikowej, wykonano obliczenia numeryczne tego problemu z zastosowaniem programu elementów skończonych ABAQUS. Otrzymano poszukiwaną zależność opisującą zmianę udziału mikropasm ścinania w prędkości odkształcenia postaciowego w czasie procesu deformacji plastycznej.
Rocznik
Tom
Strony
1--125
Opis fizyczny
Bibliogr. 248 poz., rys., wykr.
Twórcy
  • Ośrodek Mechaniki i Informatyki Stosowanej Instytutu Podstawowych Problemów Techniki PAN w Warszawie
Bibliografia
  • 1. ABAQUS/Standard (1996), Reference Manuals, Hibbitt, Karlsson & Sorensen, Inc., Providence.
  • 2. ADCOCK F. (1922), The internal mechanism of cold-work and recrystallization in Cupro-Nickel, J. Institute of Metals, 27, 73—92.
  • 3. ANAND L. i SPITZIG W. . (1980), Initiation of localized shear bands in plane strain, J Mech Phys Solids 28, 113-128.
  • 4 ANAND L. i KALIDINDI S.R. (1994), The process of shear band formation in plane strain compression of fee metals: Effects of crystallographic texture, Mech. Materials 17, 223-243.
  • 5. ARMSTRONG P.J. i FREDERICK C O. (1966), A mathematical representation of the multiaxial Bauschinger effect, G.E.G.B. Report RD/B/N 731.
  • 6 ASARO R.J. (1983), Micromechanics of crystals and polycrystals, Adv. Appl. Mech., 23, 1- 115.
  • 7. BAI Y. i DODD B. (1992), Adiabatic Shear Localization, Pergamon Press, Oxford.
  • 8 BASINSKI S.J. i BASINSKI Z.S. (1979), Plastic Deformation and Work Hardening, Dislocations in Solids, vol. 4, F.R.N. Nabarro (ed.), 261—362.
  • 9. BATDORF S.B. i BUDIANSKY B. (1949), A mathematical theory of plasticity based on the concept of slip, NACA TN, No. 1871.
  • 10. BERNSTEJN M.L. i ZAJMOWSKIJ W.A. (1973), Struktura i własności mechaniczne metali, WNT, Warszawa.
  • 11. BESSELING J.F. (1968), A thermodynamic approach to rheology, in Proceeding, IUTAM Symp on Irreversible Aspects of Continuum Mechanics, Vienna 1966, H. Parkus and L I Sedov (eds ), Springer-Verlag, Vien, 16-53.
  • 12. BESSELING J.F.i VAN DER GIESSEN E (1994), Mathematical Modelling of Inelastic Deformation, Chapman & Hall, London.
  • 13. BEVER M B., HOLT D.L., TITCHENER A.L. (1973), The stored energy of coldwork, Prog. Mater Sci., 17, 5—192.
  • 14. BEVERS C.J. i HONEYCOMBE R.W.K. (1959), Ductile fracture of single crystals, Fracture, B.L. Averbach et. al. (eds.), J. Wiley ic Sons, New York, 474—492.
  • 15. BIGONI D. i ZACCARIA D. (1993), On strain localization analysis of elastoplastic materials at finite strains, Int. J. Plasticity 9, 21—33.
  • 16. BIGONI D. (1994), On flutter instability in elastoplastic constitutive models, Int J Solids Structures, 32, 3167—3189
  • 17. BISHOP J.F.W. i HILL R.(1951), A theoretical derivation of the plastic properties of a polycrystalline face-centered metal, Phil Mag 42, 1298—1307.
  • 18 BOCHNIAK W. (1988), Strong localization of deformation in copper single crystals deformed at different temperatures, Arch. Metall. 33, 419—454.
  • 19 BOCHNIAK W. (1989), Lokalizacja odksztalcenia. Mechaniczne i strukturalne aspekty niestatecznego plastycznego plynięcia mono— i polikrystalicznej miedzi przy różnych temperaturach. Nadplastyczność w warunkach wysokotemperaturowego wymuszania zmiany drogi odkształcenia, Zeszyty Naukowe AGH, Nr 122, Kraków
  • 20. BOCHNIAK W. i KORBEL A. (1994), Strain softening effects during cross-rolling of aluminum, Proceedings of the 4th International Conference on Aluminum Alloys, Atlanta, USA, 283—288.
  • 21. BRONKHORST C.A , KALIDINDI S.R. i ANAND L. (1992), Polycrystalline plasticity and the evolution of texture in FCC metals, Phil. Trans. R. Soc. Lond A341, 443-477.
  • 22. BUDIANSKY B. (1959), A reassesment of deformation theories of plasticity, ASME J Appl Mech., 26, 259-264.
  • 23. CLEJA—TIGOIU S. i SOÓS E. (1990), Elastoviscoplastic models with relaxed configurations and internal state variables, Appl. Mech. Rev., 43, 131—151.
  • 24. CHABOCHE J.L. (1986), Time—independent constitutive theories for cyclic plasticity, Int. J. Plasticity, 2, 149-188
  • 25. CHAKRABARTY J. (1987), Theory of Plasticity, McGraw-Hill, New York.
  • 26. CHANG Y.W. i ASARO R.J. (1981), An experimental study of shear localization in aluminum—copper single crystals, Acta Metall.29, 241—257.
  • 27. CHRISTOFFERSEN J. i HUTCHINSON J.W. (1979), A class of phenomen¬ological corner theories of plasticity, J. Mech. Phys. Solids, 27, 465—487.
  • 28. DAFALIAS Y.F. (1983), A missing link in the macroscopic constitutive formulation of large plastic deformations, Plasticity Today, Modelling, Methods and Applications, A. Sawczuk and G. Bianchi (eds), Proc Int Symposium on Current Trends and Results in Plasticity, CISM, Udine, June 1983, Esevier Appl Sci, London—N York, 1985, 135—151.
  • 29. DAFALIAS Y.F. (1987), Issues on the constitutive formulation at large elastoplastic deformations, Part I: Kinematics, Acta Mechanica, 69, 119-138.
  • 30. DÈVE H.E., HARREN S., McCULLOUGH i ASARO R.J. (1988), Micro and macroscopic aspects of shear band formation in internally nitrided single crystals of Fe—Ti-Mn Alloys, Acta Metall.36, 341-365.
  • 31. DÈVE H.E. i ASARO R.J (1989), The development of plastic failure modes in crystalline materials: Shear bands in fee polycrystals, Metall. Trans. 20A, 579-593.
  • 32. DIETER G.E. (1988), Mechanical Metallurgy SI Metric Edition — adapted by D. Bacon, McGraw-Hill, London
  • 33. DŁUŻEWSKI P. (1995), On geometry and continuum thermodynamics of movement of structural defects, Mech Materials, 22, 23-41.
  • 34 DŁUŻEWSKI P. (1996), Kontynualna teoria dyslokacji jako teoria konstytutywnego modelowania skończonych, sprężysto-plastycznych deformacji, Prace IPPT PAN 13/1996.
  • 35 DŁUŻEWSKI P. i PERZYNA P. (1998), Dissipative plastic spin. Thermodynamic description, Proc. R. Soc. Lond. A - praca zgloszona do publikacji.
  • 36 DODD B. i BAI Y. (1987), Ductile Fracture and Ductility with Applications to Metalworking, Academic Press, London.
  • 37. DUBOIS Ph. (1988) , Etude cristallographique de l’initiation et de la propagation de bandes de cisaillement dans les metaux purs, These présenté a l’Université Paris—Nord pour obtenir le grade de Docteur, Juin 1988
  • 38. DUBOIS Ph., GASPERINI M., REY C. i ZAOUI A. (1988), Crystallographic analysis of shear bands initiation and propagation in pure metals Part II Initiation and propagation of shear bands in pure ductile rolled polycrystals, Arch. Mech. 40, 35—40.
  • 39 DUGGAN B.J., HATHERLYM , HUTCHINSON W.B i WAKEFIELD P.T. (1978), Deformation structures and textures in cold—rolled 70:30 brass, Metal Sci , 12, 343-351
  • 40. DUSZEK M.K. i PERZYNA P. (1991a), On combined isotropic and kinematic hardening effects in plastic flow processes, Int. J Plasticity, 7, 351—363.
  • 41. DUSZEK M.K. i PERZYNA P. (1991b), The localization of plastic deformation in thermoplastic solids, Int. J. Solids Structures, 27, 1419—1443.
  • 42. DUSZEK-PERZYNA M.K i PERZYNA P. (1997), Analysis of anisotropy and plastic spin effects on localization phenomena, Arch. Appl. Mech. - w druku.
  • 43 DYBIEC H., RDZAWSKI Z. i RICHERT M. (1989), Flow stress and structure of age-hardened Cu-0.4wt%Cr alloy after large deformation, Mat. Sci. Eng. A108, 97-104.
  • 44. DYBIEC H. (1991), Wysokotemperaturowe odksztalcenie stopu AlMg 4,5. Eksperymentalne stndium lokalizacji odkształcenia i mechanizmów deformacji w próbie rozciągania, Zeszyty Naukowe AGH, Nr. 136, Kraków.
  • 45. DZIADOŃ A. (1993), Rola lokalizacji odkształcenia w zjawisku dynamicznego starzenia polikrystalicznego tytanu alfa, Metalurgia i Odlewnictwo, Zeszyty Naukowe AGH, Nr. 146, Kraków.
  • 46. ELAM C.F. (1927), Tensile tests on alloy crystals, Proc. R. Soc. 115A, 133—169.
  • 47 EMBURY J.D., KORBEL A., RAGHUNATHAN V.S. i RYS J. (1984), Shear band formation in cold rolled Cu-6% AL single crystals, Acta Metall., 32, 1883-1894.
  • 48 EWING J..A. i ROSENHAIN W. (1900), The crystalline structure of metals, Phil Trans. R. Soc. London, 193, 353-375.
  • 49 ERBEL S., KUCZYŃSKI K i MARCINIAK Z. (1981), Obróbka plastyczna, PWN, Warszawa.
  • 50 ERINGEN C. (1967), Mechanics of Continua, Wiley, New York
  • 51 ERINGEN A.C. i SUHUBI E.S. (1974), Elastodynamics, Vol I. Finite Motions, Academic Press, New York
  • 52. FRESSENGEAS C i MOLINARI A (1983), Representation du comportement plastique anisotrope aux grandes deformations, Arch. Mech., 36, 483—498.
  • 53 GADAJ S.P., NOWACKI W.K. i PIECZYSKA E.A. (1996), Changes of temperature during the simple shear test of stainless steel, Arch. Mech., 48, 779-788
  • 54 GIL SEVILLANO J., VAN HOUTTE P. i AERNOUDT E. (1982), Large strain work hardening and textures, Progress in Materials Science 25, 69—412.
  • 55. GILMAN J.J. (1960), Physical nature of plastic flow and fracture, Plasticity,Proc. of the Second Symp on Naval Structural Mechanics, E.H. Lee and P.S Symonds (eds ), Pergamon Press, 43-99.
  • 56. Frhr. VON GÜLER i G. SACHS (1929), Zugvcrsuche an Kristallen aus Kupfer und a-Messing, Z. Phys., 55, 581-620.
  • 57. GROSMAN F. (1997), Kryteria doboru i klasyfikacja funkcji naprężenia uplastyczniającego stosowanych w komputerowej symulacji procesów przeróbki plastycznej, Rudy i Metale, R 42, 496—498
  • 58. HARREN S.V., DÈ VE H.E. i ASARO R.J. (1988), Shear band formation in plane strain compression, Acta Metall., 36, 2435—2480.
  • 59 HARREN S.V., LOWE T.C., ASARO R.J. i NEEDLEMAN A (1989), Analysis of large—strain shear in rate—dependent fee polycrystals: Correlation of micro and macromechanics, Phil. Trans. Roy. Soc. Lond., A328, 443—500.
  • 60. HASHIN Z. (1964), Theory of mechanical behavior of heterogeneous media, Appl Mech. Rev., 17, 1—9.
  • 61. HASHIN Z. (1983), Analysis of composite materials — A survey, J. Appl. Mech. 50, 481-505.
  • 62. HATHERLY M. (1983), Deformation at high strains, Strength of Metals and Alloys, Proceedings of the 6th International Conference, ICSMA 6, R C Gifkins (ed), Pergamon Press, Oxford, 1181—1195
  • 63. HATHERLY M i MAL1N A S. (1979), Deformation of copper and low stacking-fault energy, copper base alloys, Metals Technology, 6, 308—319.
  • 64. HATHERLY M i MALIN A S. (1984), Shear bands in deformed metals, Scripta Metall., 18, 449-454.
  • 65. HAVNERK.S. (1973), On the mechanics of crystalline solids, J. Mech. Phys. Solids, 21, 383-394.
  • 66. HAVNERK.S. (1974), Aspects of theoretical plasticity at finite deformation and large pressure, ZAMP, 25, 765-781.
  • 67. HAVNER K.S. (1992), Finite Plastic Deformation of Crystalline Solids, Cambridge University Press, Cambridge, U.K.
  • 68. HECKER S.S. (1976), Experimental studies of yield phenomena in biaxially loaded metals, Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects, J A. Stricklin, K. J. Saczalski (eds.), ASME, AMD — Vol. 20, 1—33.
  • 69. HILL R. (1956), The mechanics of quasi-static plastic deformation in metals, in: Surveys in Mechanics, G. K. Batchelor, R. M. Davies (eds.), Cambridge, 7—31.
  • 70. HILL R (1959), Some basic principles in the mechanics of solids without a natural time, J. Mech. Phys. Sol., 7, 209-225.
  • 71. HILL R (1963), Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys Solids, 11, 357-372.
  • 72 HILL R. (1966), Generalized constitutive relations for incremental deformation of metal crystals by multislip, J. Mech. Phys. Solids, 14, 95—102.
  • 73. HILL R (1967), The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids, 15, 779-95.
  • 74. HILL R. (1972), On constitutive macro—variables for heterogeneous solids at finite strain, Proc. R. Soc. Lond A 326, 131-147.
  • 75. HILL R. (1979), Theoretical plasticity of textured aggregates, Math. Proc. Camb. Phil. Soc., 85, 179-191
  • 76. HILL R (1983), On intrinsic eigenstates in plasticity with generalized variables, Math. Proc. Camb Phil. Soc , 93, 177-189.
  • 77. HILL R (1984), On the micro—to-macro transition in constitutive analyses of elastoplastic reponse at finite strain, Math Proc. Camb. Phil. Soc., 95, 481—494.
  • 78 HILL R. (1985), On macroscopic effects of heterogeneity in elastoplastic media at finite strain, Math. Proc. Camb. Phil. Soc., 98, 579-590.
  • 79 HILL R i RICE J II (1972), Constitutive analysis of elastic—plastic crystals at arbitrary strain, J. Mech. Phys. Solids, 20, 401 413
  • 80. HILL R. (1979), Theoretical plasticity of textured aggregates, Math. Proc. Camb. Phil. Soc. 85, 179-191.
  • 81. HONEYCOMBE R.W.K (1984), The Plastic Deformation of Metals, 2nd ed. Edward Arnold, London.
  • 82. IKEGAMI K. (1982), Experimental plasticity on the anisotropy of metals, Mechanical Behaviour of Anisotropic Solids, Proc. of the Euromech Colloquium 115, Villard-de—Lans, June 19-22, 1979, J P. Boehler (ed.), Martinus Nijhoff, 201-242.
  • 83 ILYUSHIN A.A. (1963), Plasticity (in Russian), Izd. Akad. Nauk., Moscow.
  • 84. JASIEŃSKI Z. i PIĄTKOWSKI A. (1988), Shear bands formation in copper single crystals during plane—strain compression, in Strength of Metals and Alloys, Proceedings of the 8th International Conference ICSMA 8, P.O. Kettunen et al (eds), Tampere, Pergamon Press, Oxford, 367-372.
  • 85. JASIEŃSKI Z i PIĄTKOWSKI A. (1993), Nature de bandes de cisaillement macroscopiques dans les monocrisaux de cuivre solicites en compression plane, Arch. Metall. 38, 279-301.
  • 86. KALIDINDI S.R., BRONKHORST C.A. i ANAND L. (1992), Crystallographic texture evolution in bulk processing of FCC metals, J. Mech. Phys. Solids, 40, 537-579.
  • 87 KARNOP R i SACHS G. (1928), Festigkeitseigenschaften von Kristallen einer veredelbaren Aluminiumlegierung, Z. f. Physik, 49, 480-497.
  • 88 KELLY A. i GROVES G.W. (1980), Krystalografia i defekty krysztalow, PWN, Warszawa.
  • 89. KHAN A.S. i HUANG S. (1995), Continuum Theory of Plasticity, J. Wiley & Sons, New York.
  • 90. KLEIBER M. i RANIECKI B. (1985), Elastic-plastic materials at finite strains, Plasticity Today, Modelling, Methods and Applications, A. Sawczuk and G. Bianchi (eds.), Elsevier, London, 3—46.
  • 91. KLEIBER M. (1995), Komputerowe metody mechaniki ciała stałego, Mechanika Techniczna, tom XI, M. Kleiber (ed.), Wydawnictwo Naukowe PWN, Warszawa.
  • 92. KLYUSHNIKOV V.D. (1959), on a possible way of formulating physical relations in plasticity [in Russian], Prikl. Math. Mekh., 23, 282-291
  • 93 KLYUSHNIKOV V.D. (1979), Mathematical Theory of Plasticity [in Russian], Izd. Moskovskogo Universiteta, Moscow
  • 94 KLYUSHNIKOV V.D (1980), Stability of Elastic—Plastic Systems [in Russian], Izd. Nauka, Moscow
  • 95. KLYUSHNIKOV V.D. (1994), Physical and Mathematical Foundations of Strength and Plasticity [in Russian], Izd. Moskovskogo Universiteta, Moscow.
  • 96. KNETS I.V. (1971), Basic Recent Trends in Mathematical Theory of Plasticity [in Russian], Izd. Zinatne, Riga
  • 97. KOCAŃDA S. (1985), Zmeczeniowe pqkanie metali, wyd. 3, WNT, Warszawa.
  • 98. KOITER W.T. (1953), Stress-strain relations, uniqueness and variational theorems for elastic—plastic materials with a singular yield surface, Quart. Appl. Math., 11, 350-353.
  • 99 KORBEL A., (1974), Analiza zjawiska niejednorodnego odkształcenia w roztworach substytucyjnych, Metalurgia i Odlewnictwo, Zeszyty Naukowe AGH, Nr. 65, Kraków
  • 100 KORBEL A. (1985), The real nature of shear bands-plastons?, in Plastic Instability, Proceedings of the Int Symp on Plastic Instability, Considere Memorial (1841 1914), Presses de l’Ecole Nationale des Ponts et Chaussees, Paris, 325-335
  • 101. KORBEL A. (1987), Structural and mechanical aspects of localized deformation in Al-Mg alloy, Arch. Metall., 32, 377-392.
  • 102. KORBEL A. (1990a), The mechanism of strain localization in metals, Arch. Metall., 35, 177-203.
  • 103. KORBEL A. (1990b), The model of microshear banding in metals, Scripta Metall , 24, 1229-1231.
  • 104. KORBEL A. (1992a), Perspectives of the control of mechanical performance of metals during forming operations, J Matl. Proces. Technol. 34, 41—50.
  • 105. KORBEL A. (1992b), Mechanical instability of metal substructure — catastrophic plastic flow in single and polycrystals, Advances in Crystal Plasticity, eds. D.S Wilkinson and J D. Embury, Canadian Institute of Mining and Metallurgy, 42-86.
  • 106. KORBEL A .(1998), Structural and mechanical aspects of homogeneous and non-homogeneous deformation in solids, CISM Lectures, September 1997, Udine, Springer - in print.
  • 107. KORBEL A. i MARTIN P. (1986), Microscopic versus macroscopic aspect of shear bands deformation, Acta Metall , 34, 1905—1909
  • 108 KORBEL A. i MARTIN P. (1988), Microstructural events of macroscopic strain localization in prestrained tensile specimens, Acta Metall 36, 2575—2593.
  • 109 KORBEL A., EMBURY J.D., HATHERLY M., MARTIN P.L. i ERBSLOH H.W (1986), Microstructural aspects of strain localization in Al-Mg Alloys, Acta Metall 34, 1999-2009.
  • 110 KORBEL A. i BOCHNIAK W. (1995), The structure based design of metal forming operations, J Matl Proces. Technol., 53, 229—236.
  • 111 A KORBEL, RICHERT M. i RICHERT J. (1981), The effects of very high cummulative deformation on structure and mechanical properties of aluminium, Proc. of the 2nd Riso Internat. Symp. on Metallurgy and Mater. Sci., Riso, September 14—18, 1981, 445^150.
  • 112. KORBEL A. i SZCZERBA M. (1988), Selfinduced change of deformation path in Cu—A1 single crystals, Rev. Phys. Appl. 23, 706—711.
  • 113 KORBEL. A , PIJCHERSKI R.B i KORBEL K. (1997), Sekwencyjnosc poslizgow w opisie deformacji plastycznej krysztalow, Rudy i Metale, R42, 458—461.
  • 114 KORBEL A., KORBEL K. i PĘCHERSKI R.B. (1998), Catastrophic slip phenomena in crystalline materials, Damage Mechanics in Engineering Materials, Proc. of the McNU ’97 Symposium on Damage Mechanics in Engineering Materials, June 28 — July 2, 1997, Evanston, G.Z Voyiadjis, J.W. Ju and J—L. Chaboche (eds.), Elsevier, New York — w druku.
  • 115. KOSIŃSKI W (1986), Field Singularities and Wave Analysis in Continuum Mechanics, PW'N, Warszawa i Elis Horwood, Chichester; rozszerzona wersja polskiego wydania: Wstęp do teorii osobliwości pola i analizy fal, PWN, Warszawa, 1981.
  • 116. KRATOCHVIL J. (1971), Finite—strain theory of crystalline elastic—inelastic materials, J. Appl. Phys. 42, 1104-1108
  • 117. KRÖNER E. (1986), The statistical basis of polycrystal plasticity, Large Deformations of Solids Physical Basis and Mathematical Modelling, J. Gittus et. al (eds), Elsevier, London and New York, 27—40.
  • 118. KUŚNIERZ J. (1992), Localization of strain and fracture in anisotropic metal sheets with face centered cubic lattice, Arch. Metall. 37, 203—281.
  • 119. LAMMERING R. PĘCHERSKI R.B i STEIN E. (1990), Theoretical and computational aspects of large plastic deformations involving strain—induced anisotropy and developing voids, Arch. Mech. 42, 347-375.
  • 120. LE K.C. i STUMPF H. (191(4), Finite elastoplasticity with microstructure, Mitteilungcn aus dem Instllut flir Mechanik, Nr 92, Ruhr—Universitat Bochum.
  • 121. LEE E. H. i Liu D.T.(1967), Finite strain-elastic-plastic theory with application to plane-wave analysis, .L. Appl. Phys. 38,19-27.
  • 122. LEE E.H. (1969), Elastic—plastic deformation at finite strains, J. Appl.Mech., 36, 1-6.
  • 123. LORET B. (1983), On the effects of plastic rotation in the finite deformation of anisotropic elastoplastic materials, Mech. Materials, 2, 287-304.
  • 124. LORET B. (1986), Some macroscopic consequences of the granular structure of sand, Large Deformations of Solids: Physical basis and Mathematical Modelling, J. Gittus, J. Zarka and S. Nemat—Nasser (eds.), Eslsewier, London, 477—496.
  • 125. LORET B. (1992), Does deviation from deviatoric associativity lead to the onset of flutter instability?, J. Mech. Phys. Solids, 40, 1363—1375.
  • 126. LUBLINER J. (1990), Plasticity Theory, Macmillan, New York
  • 127. LUFT A. (1991), Microstructural processes of plastic instabilities in strengthened metals, Progress in Materials Science 35, 91-207 (1991).
  • 128. ŁODYGOWSKI T. i PERZYNA P. (1997a), Numerical modelling of located fracture of inelastic solids in dynamic loading processes, Int. J. Num Engn., 40, 4137—4158.
  • 129. ŁODYGOWSKI T. i PERZYNA P. (1997b), Localized fracture in inelastic polycrystalline solids under dynamic loading processes, Int. J. Damage Mechanics, 6, 364-407.
  • 130. MALIN A.S. i HATHERLY M. (1979), Microstructure of cold—rolled copper, Metal Sci., 13, 463-172.
  • 131. MANDEL J. (1971), Plasticite classique et viscoplasticite, C.I.S.M., Udine, Springer Verlag.
  • 132. MANDEL J. (1974), Thermodynamics and plasticity, in: Foundations of Continuum Thermodynamics, J.J. Delgado Domingos et al (eds.), McMillan, London, 283-304.
  • 133. MANDEL J. (1980), Mécanique des Solides anélastiques — Généralisation dans R9 de la règle du potentiel plastique pour un élément polycrystallin, C. R.. Acad. Sc. Paris, 290 B, 481-484
  • 134. MARTIN P., BAUDELET B , ESPERANCE G.L., KORBEL A. i SCHMITT J.H. (1988), Macroscopic strain localization: Role of microstructural instabilities, in Strength of Metals and Alloys, Proceedings of the 8th International Conference ICSMA 8, P.O. Kettunen et al (eds.), Tampere, Pergamon Press, Oxford, 403—408.
  • 135. MASIMA M. i SACHS G. (1928), Mechanische Eigenschaften von Messing kristallen, Z. Phys., 50, 161-186.
  • 136. MEYERS M.A. (1994), Dynamic Behavior of Materials, J. Wiley it Sons, New York.
  • 137. MRÓZ Z. (1963), Non—associated flow laws in plasticity, J. de Mecanique, 2, 21-42.
  • 138. MRÓZ Z. (1964), On non-linear flow laws in the theory of plasticity, Bull. Acad. Polon. Sci., 12, 531-539.
  • 139. MRÓZ Z. (1986), Phenomenological constitutive models for metals, Modelling Small Deformations of Polycrystals, J. Gittus i J. Zarka (eds.), Elsevier, London, 293-344.
  • 140 NEMAT—NASSER S. i HORI M. (1993), Micromechanics: Overall properties of heterogeneous materials, North-Holland, Amsterdam.
  • 141. NEMAT—NASSER S. (1986), Generalization of the Mandel-Spencer double—slip model, Large Deformations of Solids: Physical Basis and Mathematical Modelling, J. Gittus, J. Zarka and S. Nemat-Nasser (eds.), Elsevier, London, 269—282.
  • 142. NEUHAUSER H. (1983), Slip—line formation and collective dislocation motion, Dislocation in Solids, vol 6, F.R.N. N'abarro (ed ), 319—440.
  • 143. NGUYEN HUU VIEM (1992), Constitutive equations for Gnite deformations of elastic-plastic metallic solids with induced anisotropy, Arch. Mech., 44, 585-594.
  • 144. NGUYEN HUU VIEM i NOWACKI W.K. (1997), Dynamic simple shear of metal sheets, Arch. Mech., 49, 369—384.
  • 145. NOWACKI W.K. i NGUYEN HUU VIEM, (1995), Dynamic simple shear test. Experiment and numerical investigation, Proc. 9th DYMAT Technical Conference, Munich, October 10—11th, 1995.
  • 146. OLIFERUK W., SWIĄTNICKI W.A. i GRABSKI M.W. (1995), Effect of the grain size on the rate of energy storage during the tensile deformation of an austenitic steel, Mater. Sci. Eng , A 197, 49—58.
  • 147. OLIFERUK W. (1995), Bilans energii a ewolucja mikrostruktury podczas jednoosiowego rozciągania stali austenitycznej, Rudy i Metale, 40, 438—441.
  • 148. OLIFERUK W., KORBEL A. i GRABSKI M.W. (1996), Mode of deformation and the rate of energy storage during uniaxial tensile deformation of austenitic steel, Mat Sci Eng , A220, 121-128.
  • 149. OLIFERUK W., KORBEL A. i GRABSKI M W. (1997), Slip behaviour and energy storage process during uniaxial tensile deformation of austenitic steel, Mat. Sci. Eng , A234—236, 1122-1125.
  • 150. OLMSTEAD W.E., NEMAT—NASSER S. i NI L. (1994), Shear bands as surface of discontinuity, J. Mech. Phys. Solids, 42, 697-709.
  • 151. OLSZAK W., MRÓZ Z. i PERZYNA P. (1963), Recent Trends in the Development of the Theory of Plasticity, Pergamon Press-PWN, Warszawa.
  • 152 OSTROWSKA-MACIEJEWSKA J. (1994), Mechanika ciai odksztalcalnych, PWN, Warszawa.
  • 153. PAWEŁEK A, JASIENSKI Z., PIĄTKOWSKI A., LITWORA A. i PAUL H. (1996), Acustic emission and strain localization in shear bands during channel—die compression, Arch. Metall., 41, 324—335.
  • 154. PAWLICKI J. i GROSMAN F. (1997), Wplyw zmiany orientacji osi glownych stanu naprezenia na wartosc naprezenia uplastyczniaj^cego, Rudy i Metale, R42, 501-503.
  • 155. PAUL 11 , JASIEŃSKI Z. , PIĄTKOWSKI A , LITWORA A. i PAWEŁEK A. (1996), Crystallographic nature of shear bands in polycrystalline copper, Arch. Metall., 41, 337 353
  • 156. PAULUN J E i PĘCHERSKI R.B. (1985), Study of corotational rates for kinematic hardening in finite deformation plasticity, Arch. Mech., 37, 661—677.
  • 157. PAULUN J.E. i PĘCHERSKI R.B. (1987), On the application of the plastic spin concept for the description of anisotropic hardening in finite deformation plasticity, Int. J. Plasticity, 3, 303-314.
  • 158. PAULUN J.E. i PĘCHERSKI R.B (1992a), On the relation for plastic spin, Arch. Appl Mech , 62, 386-393.
  • 159. PAULUN J.E. i PĘCHERSKI R.B. (1992b), On the relation for plastic spin A new physical motivation, ZAV1M, 72, T 185-T 190.
  • 160. PERZYNA P. (1971), Thermodynamic theory of viscoplasticity, Advances in Applied Mechanics, 11, Academic Press, New York, 313—354.
  • 161. PERZYNA P. (1978), Termodynamika materiałow niespreżystych, PWN, Warszawa.
  • 162. PERZYNA P. (1993), Interactions of elastic-viscoplastic waves and localization phenomena in solids, IUTAM Symposium on Nonlinear Waves in Solids, August 15—20, 1993, Victoria, Canada; Wegener J.L i Norwood F.R. (eds.) Proc. ASME Book No. AMR 137, 114-121, 1995.
  • 163. PERZYNA P. (1994), Instability phenomena and adiabatic shear band localization in thermoplastic flow processes, Acta Mechanica, 106, 173—205
  • 164. PERZYNA P. (1998), Thermodynamics of crystal viscoplasticity and instability phenomena, Material Instabilities in Solids, R. De Borst i E. Van Der Giessen (eds.), J. Wiley, Chichester, New—York — w druku.
  • 165. PERZYNA P. i KORBEL K. (1996), Analysis of the influence of the substructure of a crystal on shear band localization phenomena of plastic deformation, Mech. Materials, 24, 141-158.
  • 166. PETRYK H. (1989), On constitutive inequalities and bifurcation in elastic-plastic solids with a yield—surface vertex, J. Mech. Phys. Solids, 37, 265—291.
  • 167. PETRYK H. (1995), Thermodynamic stability of equilibrium in plasticity, J. Non-Equlib. Thermodyn., 20, 132—149.
  • 168. PETRYK H. (1998), On the micro—macro transition and hardening moduli in plasticity, Proc. IUTAM Symposium, August 1997, Bochum — w druku.
  • 169 PETRYK H. i K. THERMANN (1997), A yield-vetex modification of two-surface models of metal plasticity, Arch. Mech., 49, 847-863.
  • 170. PECHERSKI R.B. (1982), Constitutive modelling for advanced deformations and localisation of viscoplastic materials, Numerical Methods in Industrial Forming Processes, J.F.T. Pitman, R.D Wood, J.M Alexander and O.C. Zienkiewicz (eds.), Pineridge Press, Swansea, 449—459.
  • 171. PĘCHERSKI R.B. (1983), Relation of microscopic observations to constitutive modelling for advanced deformations and fracture initiation of viscoplastic materials, Arch. Mech., 35, 257—277.
  • 172 PĘCHERSKI R.B. (1985), Discussion of sufficient condition for plastic flow localization, Engn. Fracture Mechanics, 21, 767-779.
  • 173. PĘCHERSKI R B (1986),The disturbed plastic spin concept and its consequences in plastic instability, Proc. of NUBIFORM ’86, Numerical Methods in Industrial Forming Processes, K. Mattiasson et. al. (eds ), Balkema, Rotterdam/Boston, 145-150.
  • 174. PĘCHERSKI R.B (1988a), The plastic spin concept and the theory of finite plastic deformartions with induced anisotropy, Arch. Mech., 40, 807-818.
  • 175 PĘCHERSKI R.B (1988b), Constitutive description and numerical approach in modelling for metal forming processes, in Modelling of Metal Forming Processes, J.L. Chenot and E. Onate (eds.), Kluver Academic Publ., 11-18.
  • 176. PĘCHERSKI R.B (1991), Physical and theoretical aspects of large plastic deformations involving shear banding, Finite Inelastic Deformations. Theory and Applications, Proc. IUTAM Symposium Hannover, Germany 1991, D. Besdo and E. Stein (eds), Springer Verlag, 1992, 167-178.
  • 177. PĘCHERSKI R.B. (1992a), Modelling of large plastic deformations based on the mechanism of micro—shear banding. Physical foundations and theoretical description in plane strain, Arch. Mech., 44, 563—584.
  • 178. PĘCHERSKI R.B. (1992b), A model of plastic flow with an account of micro—shear banding, ZAMM, 72, T 246—T 250.
  • 179. PĘCHERSKI R.B. (1993a), Theoretical description of plastic flow accounting for micro-shear bands, Arch. Metall., 38, 205—219.
  • 180. PĘCHERSKI R B. (1993b), A model of plastic flow accounting for micro-shear bands idealized by means of double—shearing system, ZAMM, 73, T 339-T 343.
  • 181. PĘCHERSKI R.B (1994), Model of shear banding based on the idea of potential surfaces forming a vertex on the extremal surface, ZAMM, 74, T 190—T 192.
  • 182. PĘCHERSKI R.B. (1995), Model of plastic flow accounting for the effects of shear banding and kinematic hardening, ZAMM, 75, 203—204.
  • 183. PĘCHERSKI R.B. (1996a), Finite deformation plasticity with strain induced anisotropy and shear banding, J. Materials Process. Technol., 60, 35—44.
  • 184. PĘCHERSKI R.B. (1996b), Constitutive modelling of plastic flow accounting for micro-shear banding, Proc. of the 3rd Asia-Pacific Symposium on Advances in Engineering Plasticity and Its Applications - AEPA’96, T. Abe & T. Tsuta (eds.), 21—24 August 1996, Hiroshima, Pergamon, Amsterdam, 123-128
  • 185. PĘCHERSKI R.B. (1997), Macroscopic measure of the rate of deformation produced by micro—shear banding, Arch. Mech., 49, 385—401
  • 186. PĘCHERSKI R.B. (1998a), Macroscopic effects of micro shear banding in plasticity of metals, Acta Mechanica - w druku.
  • 187. PĘCHERSKI R.B. (1998b), Macromechanical description of micro—shear banding, Proc. of the McNU ’97 Symposium on Damage Mechanics in Engineering Materials, June 28 — July 2, 1997, Evanston, G.Z. Voyiadjis, J.W. Ju and J-L Chaboche (eds ), Elsevier, New York, 1997 - w druku.
  • 188. PĘCHERSKI R B (1998c), Does micro-shear banding lead to flutter instability? - praca w przygotowaniu.
  • 189 PĘCHERSKI R.B. i NOWAK Z. (1998), Numerical analysis of metal forming operations accounting for micro—shear banding — praca w przygotowaniu
  • 190. PĘCHERSKI R.B , KORBEL K. i KORBEL A (1998), Plastic strain in metals produced by sequential slip, Journal de Physique — praca wyslana do publikacji.
  • 191. PIECZYSKA E.A, GADAJ S.P. i NOWACKI W K (1998), Experimental investigation of thermomechanical coupling in an austenitic steel subjected to consecutive tensile deformation, Int. J. Plasticity — w druku.
  • 192. PRICE R.J. i KELLY A (1964), Deformation of age—hardened aluminium alloy crystals-II. Fracture, Acta Metall. 12, 979—992.
  • 193. PUTTICK K.E (1963), Necking and fracture in aluminium crystals, Acta Metall 11, 986-989
  • 191. RAM AKRISHNAN N. i ATLURI S.N. (1994a), Simulation of shear band formation in plane strain tension and compression using FEM, Mechanics of Materials, 17, 307-317
  • 195 RAMAKRISHNAN N. i ATLURI S.N. (1994b), On shear band formation: I. Constitutive relationship for a dual yield model, Int. J. Plasticity, 10, 499—520.
  • 196 RAMAKRISHNAN N., OKADA H. i ATLURI S.N. (1994), On shear band formation: II. Simulation using finite element method, Int. J. Plasticity, 10, 521-534.
  • 197 RANIECKI B. (1984), Thermodynamic aspects of cyclic and monotone plasticity, The Constitutive Law in Thermoplasticity, Th. Lehmann (ed ), C1SM Courses and Lectures No 281, Springer Verlag, Wien-New York, 251-321.
  • 198. RANIECKI B. (1906), Termomechanika pseudosprężystości materiałów z pamiecią kształtu, Podstawy termomechaniki materialów z pamiecią kształtu, Seria Współczesne Trendy w Mechanice Materiałów, tom 1., W.K. Nowacki (ed.), Osrodek Mechaniki IPPT PAN, Warszawa, 55—136.
  • 199. RANIECKI B. i MRÓZ Z. (1990), On the strain-induced anisotropy and texture in rigid—plastic solids, in: Inelastic Solids and Structures. A. Sawczuk Memorial Volume, M. Kleiber and A. Konig (eds.), Pineridge Press, Swansea, 13—32.
  • 200. RANIECKI B i NGUYEN HUU VIEM (1984), Isotropic elastic-plastic solids at finite strain and arbitrary pressure, Arch. Mech., 36, 687—704.
  • 201. RANIECKI B. i SAMANTA S.K. (1989), The thermodynamic model of rigid - plastic solid with kinematic hardening, plastic spin and orientation variables, Arch. Mech. 41, 747-758.
  • 202. RICE J.R. (1975), Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanics, in: Constitutive Equations in Plasticity, A S. A.S.Argon (ed.), MIT Press, 23—79.
  • 203. RICE J.R. (1976), The localization of deformation, Theoretical and Applied Mechanics, Proc. of the 14th IUTAM Congress, Delft, W.T. Koiter (ed.), North-Holland, Amsterdam, 207—220.
  • 204. RICHERT M. (1995), Strukturalne i mechaniczne skutki lokalizacji odkształcenia w AI99.992 i AlMg5 w zakresie dużych odkształceń, Wydawnictwa AGH, Rozprawy Monografie 23, Kraków.
  • 205. RICHERT M. i KORBEL A. (1995), The effect of strain localization on mechanical properties of AI99,992 in the range of large deformations, J. Matl. Proces. Technol., 53, 331-340.
  • 206. RICHERT M. i KORBEL A. (1997), The effect of alloying on the mechanical performance and substructure of aluminum and large strains, Materials Science and Engineering.
  • 207.RICHERT M., RICHERT J., ZASADZINSKI J. i DYBIEC H. (1988), The boundary strain hardening of Aluminium with unlimited cumulation of large deformation, Z. Metall., 79, 741—745.
  • 208. RUDNICKI J.W. i RICE J.R. (1975), Conditions for the localization of deformation in presure-sensitive dilatant materials, J. Mech. Phys. Solids, 23, 371-394.
  • 209. RYCHLEWSKI J., Nieliniowa mechanika kontinuum, Wyklady, IPPT PAN, 1974.
  • 210. RYMARZ Cz. (1993), Mechanika ośrodków ciągłych, Wydawnictwo Naukowe PWN, Warszawa
  • 211 SACHS G. i WEERTS J. (1930), Zugversuche an Gold—Silberkristallen, Z. Phys., 62, 473-493.
  • 212 SAIMOTO S., HOSFORD W.F. Jr. i BACKOFEN W.A (1965), Ductile fracture in copper single crystals, Phil. Mag. 12, 319—333
  • 213. SANDERS J.L. (1954), Plastic stress—strain relations based on linear loading functions, Proc. 2nd. U.S. Nat. Congr Appl. Mech., ASME, Ann Arbor, 455—460.
  • 214. SCHMID E. i BOAS W. (1935), Kristallplastizitat, Springer, Berlin; wyd. w j. ang.: Plasticity of Crystals with Special Reference to Metals, Chapman & Hall, London, 1968.
  • 215. SEWELL M.J. (1974), A plastic flow at a yield vertex, J. Mech. Phys. Solids, 22, 469-490.
  • 216. SKRZYPEK J. (1993), Plasticity and Creep, Theory, Examples, and Problems, R. Hetnarski (ed.), CRC Press, Boca Raton, Florida; rozszerzona wersja polskiego wydania: Plastyczność i pełzanie: teoria, zastosowania, zadania, PWN, Warszawa 1986.
  • 217. SMITH D.R. (1993), An Introduction to Continuum Mechanics, Kluwer Academic Publishers, Dordrecht.
  • 218. SOBCZYK K. (1996), Stochastyczne równania różniczkowe, teoria i zastosowania, Wydawnictwa Naukowo—Techniczne, Warszawa.
  • 219. SPITZIG W.A. (1981), Deformation behavior of nitrogenated Fe-Ti-Mn and Fe—Ti single crystals, Acta Metall., 29, 1359—1377.
  • 220. STOLZ C. (1990), On relationship between micro and macro scales for particular cases of nonlinear behaviour of heterogeneous media, Proc. of IUTAM/ICM Symposium on Yielding, Damage and Failure of Anisotropic Solids, J.— P. Boehler (ed.), Mechanical Engineering Publications, London.
  • 221. STÜREN S. i RICE J.R. (1975), Localized necking in thin sheets, J. Mech. Phys. Solids, 23, 421—441.
  • 222. SU X.M. (1992), Localized banding with strong velocity jumps, Arch. Appl. Mech., 62, 172-180.
  • 223. SWIFT H.W. (1947), Length changes in metals under torsional overstrain, Engineering, 163, 253—257.
  • 224. SZCZEPINSKI W., DIETRICH L. i MIASTKOWSKI J. (1990), Plastic properties of metals, in Experimental Methods in Mechanics of Solids, W Szczepinski (ed.), Polish Scientific Publishers, Warszawa; Elsevier, Amsterdam, 1990, 3—132.
  • 225. SZCZEPIŃSKI W. i J. MIASTKOWSKI (1994), On experimental studies of yield surfaces of metals; a more general approach, Arch. Mech. 46, 151—176.
  • 226 SZCZERBA, M. (1996), Transformacje dyslokacji podczas bliźniakowania w kryształach regularnych, Wydawnictwa AGH, Rozprawy Monografie 49, Kraków.
  • 237. SZCZERBA M. i KORBEL A. (1987), Strain softening and instability of plastic Dow in Cu—AI single crystals, Acta Metall., 35, 1129—1135.
  • 228.TAYLOR G.I. i C.F. ELAM (1925), The plastic extension and fracture of aluminium crystals, Proc. Roy. Soc. A108, 28—51, także w: The Scientific Papers of Sir Geoffrey Ingram Taylor, vol. I, Mechanics of Solids, G.K. Batchelor, F.R.S., Cambridge, 1958, 109-129.
  • 229. TAYLOR G.I. i QUINNEY H. (1934), The latent energy remaining in a metal after cold working, Proc. Roy. Soc., A143, 307—326, takze w: The Scientific Papers of Sir Geoffrey Ingram Taylor, vol I, Mechanics of Solids, G.K. Batchelor, F.R.S., Cambridge, 1958, 310-328.
  • 230. TEODOSIU C. (1970), A dynamic theory of dislocations and its applications to the theory of the elastic—plastic continuum, Fundamental Aspects of Dislocation Theory, A. Simmons et al (eds.) Nat Bur Stand Spec Publ, 317, II, 837-875.
  • 231. THOMAS T.Y (1961), Plastic Flow and Fracture in Solids, Academic Press, New York and London.
  • 232. TRUESDELL C. i TOUPIN R.A. (1960), The Classical Field Theories, Encyclopaedia of Physics, III/1, ed. S. Flügge, Springer—Verlag, Berlin.
  • 233. TRUESDELL C. i NOLL W. (1965), The Non-linear Field Theories of Mechanics, Encyclopaedia of Physics , IIi/3, ed. S. Fliigge, Springer-Verlag, Berlin
  • 234. VALANIS K.C. (1989), Banding and stability in plastic materials, Acta Mech., 79, 113-141.
  • 235 VAN DER GIESSEN E. (1991), Micromechanical and thermodynamic aspects of the plastic spin, Int. J Plasticity 7, 365—386.
  • 236 VAN DER GIESSEN E (1992), Some aspects of the macroscopic plastic spin during texture development in polycrystalline metals, Microstructural Characterization in Constitutive Modelling of Metals and Granular Media, G.Z. Voyiadjis (ed.) MD-Vol 32, ASME, New York
  • 237. WILLIS J.R. (1969), Some constitutive equations applicable to problems of large dynamic plastic deformation, J. Mech. Phys. Solids, 17, 359—369.
  • 238. WILLIS J.R. (1975), Finite deformation solution of a dynamic problem of combined compressive and shear loading of combined compressive and shear loading for an elastic-plastic half—space, J. Mech. Phys. Solids 23, 405—419.
  • 239. WOŹNIAK Cz. (1985), Mechanika osrodkow cUglych, Mechanika Techniczna, tom I, Podstawy Mechaniki, II Zorski (ed), PWN, Warszawa.
  • 240. WOŻNIAK Cz. i WOŻNIAK M (1995), Modelowanie w dynamice kompozytów. Teoria i zastosowania, Prace IPPT PAN, 25/1995.
  • 241 WRIGHT T.W. i RAVICHANDRAN G. (1997), Canonical apects of adiabatic shear bands, Int. J. Plasticity, 13, 309-325.
  • 242. WRÓBEL M., DYMEK S., BLICHARSKI M. (1990), Microstructure of rolled copper single crystals, Arch. Mech., 35, 245—258.
  • 243 WROBEL M., DYMEK S., BLICHARSKI M. i DRIVER J. (1995), Microstructural changes due to rolling of austenitic stainless steel single crystals with initial orientation (110)[00l] and (110)[Tl0], Scripta Metall. Mater., 32, 1985-1991.
  • 244. YANG S., (1990), Etude experimentale et theoretique de l’initiation de de deformation plastique en bande de cisaillement dans les materiaux metalbques, These présenté a l’Université Paris—Nord pour obtenir le grade de Docteur, Novembre 1990.
  • 245. YANG S. i REY C. (1994), Shear band postbifurcation in oriented copper single crystals, Acta Metall., 42, 2763—2774.
  • 246. YANG S. i REY C. (1993), Analysis of deformation by shear banding: A two-dimensional post—bifurcation model, in MECAMAT’91, C. Teodosiu et al. (eds.) Balkema, Rotterdam, 229—237.
  • 247. YEUNG W.Y. i DUGGAN B.J. (1987), On the plastic strain carried by shear bands in cold-rolled a-brass, Scripta Metall. 21, 485—490.
  • 248. ŻYCZKOWSKI M. (1973), Obciążenia złożone w teorii plastyczności, PWN, Warszawa; rozszerzone wydanie w j. ang , Combined Loading in the Theory of Plasticity, PWN, Warszawa, 1981.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB4-0001-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.