PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spojrzenie na wymiarowanie trwałościowe konstrukcji nośnych w aspekcie bezpieczeństwa

Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Twórcy
autor
  • Politechnika Warszawska, Wydział Samochodów i Maszyn Roboczych
  • Politechnika Warszawska, Wydział Samochodów i Maszyn Roboczych
Bibliografia
  • 1. Hudak S. J., Jr. at al.: A Comparison of Single-Cycle Versus Multiple Cycle Proof Testing Strategies. Report No. 4318, Washington CD, National Aeronautics and Space Administration, 1990.
  • 2. Schutz W.: Fatigue Life Prediction - a Review of the State of the Art. Structural Failure, Liability and Technical Insurance. Elsevier Science Publishers B. V., 1993, pp. 49-60.
  • 3. Jakubczak H.: Wpływ jakości wykonania oraz warunków eksploatacji na bezpieczeństwo konstrukcji nośnych maszyn. Problemy Eksploatacji, Vol. 44, No 3, 2001, ss. 159 – 168.
  • 4. Jakubczak H.: Niepewność danych zmęczeniowych w prognozowaniu trwałości zmęczeniowej konstrukcji nośnych maszyn. Prace Naukowe Politechniki Warszawskiej, Mechanika, No 194, Warszawa 2002.
  • 5. Ang A. H-S., Munse W. H.: Practical Reliability Basis for Structural Fatigue. ASCE National Structural Engineering Conference, 1975.
  • 6. Szala J., Zawiślak S.: Application of Computer Simulation Method for Determining a Distribution Type of Construction Parts Fatigue Life. Archiwum Budowy Maszyn, T. XXXVII, Z. 3, 1990, pp. 145-167.
  • 7. Zhao Z., Haldar A.: Bridge Fatigue Damage Evaluation and Updating Using Non-Destructive Inspections. Engg. Fracture Mechanics, Vol. 53, No. 5, 1996, pp. 775-788.
  • 8. Bolotin V. V.: Reliability Against Fatigue Fracture in the Presence of Sets of Cracks. Engineering Fracture Mechanics, Vol. 53, No. 5, 1996, pp. 753-759.
  • 9. Gurney, T. R., Maddox S. J.: A Re-Analysis of Fatigue Data for Welded Joints in Steel. Welding Research International, Vol. 3, No. 4, 1973.
  • 10. Kocańda S., Szala J.: Podstawy obliczeń zmęczeniowych. PWN, Warszawa 1985.
  • 11. Spindel J. E., Haibach E.: Some Considerations in the Statistical Determination of the Shape of S-N Curves. Statistical Analysis of Fatigue Data, ASTM STP 744, 1981, pp. 89-113.
  • 12. El Maraghy H. A., Siddal, J. N.: Finite Fatigue Life Distributions of SAE 1008 Subjected to Various Load-Time Histories. Transactions of the ASME, Journal of Engineering Materials and Technology, Vol. 102, 1980, pp. 135-140.
  • 13. Committee on Fatigue and Fracture Reliability of the Committee on Structural Safety and Reliability of the Structural Division: Fatigue Reliability: Development of Criteria for Design. Journal of the Structural Division, ASCE, Vol. 108, No. ST1, 1982, pp. 71-89.
  • 14. Zhao J. at al.: A Reliability Assessment Method in Strain-Based Fatigue Life Analysis. Transactions ASME, Journal of Pressure Vessels Technology, Vol. 120, No 1, 1998, 99-104.
  • 15. Kliman V. at al.: Residual Operating Lifetime – Estimation of Distribution Function. Advances in Fatigue Lifetime Predictive Techniques: 3rd Volume, ASTM STP 1292, 1996, pp. 305-327.
  • 16. Sinclair G. M., Dolan T. J.: Effects of Stress Amplitude on Statistical Variability in Fatigue Life of 758-T6 Aluminium Alloy. Transactions of ASME, Vol. 75, 1951.
  • 17. N. N. Wyniki badań próbek stali A514 oraz 8620/8685M. Korespondencja prywatna z University of Waterloo, Canada, 1999.
  • 18. Jakubczak H.: Metoda oceny trwałości zmęczeniowej węzłów spawanych konstrukcji stalowych z uwzględnieniem tolerancji wykonawczych. Rozprawa doktorska, Politechnika Warszawska 1982.
  • 19. Zhao X. Z.: A Methodology for Strain-Based Fatigue Reliability Analysis. Reliability Engineering and System Safety, Vol. 70, 2000, 205-213.
  • 20. Kandarpa S. at al.: Reliability Analysis of Structural Components Utilizing the Strain-Life Method. Engineering Fracture Mechanics, Vol. 53, No 5, 1996, pp. 761-774.
  • 21. Fatigue Design Handbook, AE-10, SAE Publication, 1988.
  • 22. Maddox S. J.: Fatigue Crack Propagation Data Obtained from Parent Plate, Weld Metal and HAZ in Structural Steels. Research Report E/48/72, The Welding Institute, 1972.
  • 23. Bruckner-Foit A. at al.: Prediction of the Lifetime Distribution of High-Strength Components Subjected to Fatigue Loading. Fatigue Fracture of Engineering Materials and Structures, Vol. 16, No 8, 1993, pp. 891-908.
  • 24. Cohelo da Silva R. B., Bastian F. L. (1995), in Proceedings of the VTT Symposium on Fatigue Design, G. Marquis and J. Solin (Eds).
  • 25. Tryon R. G. at al.: Development of a Reliability-Based Fatigue Life Model for Gas Turbine Engine Structures. Engineering Fracture Mechanics, Vol. 53, No 5, 1996, pp. 807-828.
  • 26. Weber M. A.: Risk Assessment Through Probabilistic Structural Analysis. International Journal of Pressure Vessels and Piping. Vol. 61, 1995, 527-540.
  • 27. Ichikawa M.: Probabilistic Fracture Mechanics Investigation of Fatigue Crack Growth Rate. [in:] Statistical Research on Fatigue and Fracture, (ed. T. Tanaka at al.), Elsevier Applied Science, 1987, pp. 71-89.
  • 28. Virkler D. A. at al.: The Statistical Nature of Fatigue Crack Propagation. Journal of Engineering Materials and Technology, Vol. 101, 1979, 148-153.
  • 29. Doliński K.: Time and Crack Length Dependent Stochastic Models of Fatigue Crack Growth. State-of-the-Art Review. Engineering Transactions. Vol. 40, No 3, 1992, pp. 387-410.
  • 30. Johnston G. O.: Statistical Scatter in Fracture Toughness and Fatigue Crack Growth Rate Data. Probabilistic Fracture Mechanics and Fatigue Methods, ASTM STP 798, 1983, pp. 42-66.
  • 31. Ostergaard D. F., Hillbery B. M.: Characterization of the Variability in Fatigue Crack Propagation Data. Probabilistic Fracture Mechanics and Fatigue Methods, ASTM STP 798, 1983, pp. 97-115.
  • 32. Bertini L., Marmorini L.: On the Characterization of Fatigue Crack Growth Behaviour From a Statistical Viewpoint Via the Paris Law Coefficients. 2nd Int. Conf. on „Fatigue and Stress”, Ed. H.P. Lieurade, Pub. IITT Int., Gourmay-sur- Marne, France 1989, pp. 48-58.
  • 33. Hazanow I. I., Politow W. A.: Wierojatnostnaja model usta- Łostnoj doŁgowiecznosti w swietlie predstawlenij liniejnoj miechaniki razruszenija. Problemy Procznosti No. 2, 1977, ss. 10-15.
  • 34. Akama M., Ishizuka H.: Reliability Analysis of Shinkansen Vehicle Axle Using Probabilistic Fracture Mechanics. JSME, series A, Vol. 38, No 3, 1995, pp. 378-383.
  • 35. Mimura H. at al.: Scatter of Fracture Toughness in an Inhomogeneous Material. Fatigue Fracture of Engineering Materials and Structures, Vol. 18, No 4, 1993, pp. 455-462.
  • 36. Wallin K.: Statistical Re-evaluation of the ASME KIc and KIR Fracture Toughness Reference Curves. Nuclear Engineering and Design, No 193, 1999, 317-326.
  • 37. Zhou W.: Probabilistic Approach for Prevention of Structural Failure. Technology, Law and Insurance No 4, 1999, pp. 231-237.
  • 38. Sobczykiewicz W. i in.: Wymiarowanie konstrukcji nośnych sprzętów roboczych mrc w zakresie trwałości zmęczeniowej z uwzględnieniem procesu technologicznego wytwarzania i warunków eksploatacji. CPBP 02.05, Wydawnictwa Politechniki Warszawskiej, Warszawa 1990.
  • 39. Jakubczak H., Glinka G.: Fatigue Analysis of Manufacturing Defects in Weldments. International Journal of Fatigue, Vol. 8, No. 2, 1986, pp. 51-57.
  • 40. Sobczykiewicz W., Rzeszot J.: Metoda szacowania wytężenia lokalnego w złączach spawanych dla potrzeb wymiarowania trwałościowego. VI Konf. Rozwój Podstaw Budowy, Eksploatacji i Badań MRC, Zakopane 1993.
  • 41. Lopez Martinez L., Korsgren P.: Characterization of Initial Defect Distribution and Weld Geometry in Welded Test Specimens. Proc. of the Nordic Conference on Fatigue. Ed by A.F. Blom, EMAS Publishers, England, 1993.
  • 42. Zhao Y-X. at al.: A Statistical Investigation of the Fatigue Lives of Q235 Steel Welded Joints. Fatigue & Fracture of Engineering Materials & Structures, Vol. 21, No 7, 1998, pp. 781-790.
  • 43. Zhao Y-X. at al.: An Approach for Determining an Appropriate Assumed Distribution of Fatigue Life Under Limited Data. Reliability Engineering and System Safety No. 67, 1-7, 2000.
  • 44. Shijve J.: A Normal Distribution or a Weibull Distribution for Fatigue Lives. Fatigue Fracture of Engineering Materials and Structures, Vol. 16, No 8, 1993, pp. 851-859.
  • 45. Soares C. G., Garbatov Y.: Fatigue Reliability of the Ship Hull Girder Accounting for Inspection and Repair. Reliability Engineering and System Safety, Vol. 51, 1996.
  • 46. Sobczyk K. at al.: Probabilistic Micromechanical Description of Fatigue Crack Initiation. Arch. Mech. Vol. 52, No 4-5. 2000, pp. 761-777.
  • 47. Hasofer A. M., Lind N. C.: Exact and Invariant Second Moment Code Format. Journal of Engineering Mechanics Division, ASCE, 1985, No 100, pp. 111-121.
  • 48. Der Kureghian A. at al.: Second-Order Reliability Approximations. Journal of Engineering Mechanics, Vol. 113. No 8, 1987.
  • 49. Liu W.K. at al.: Three Reliability Methods for Fatigue Crack Growth. Engineering Fracture Mechanics, Vol. 53, No 5, 1996, pp. 733-752.
  • 50. Shinozuka M.: Basic Analysis of Structural Safety. Journal of Structural Engineering. Vol. 109. No 3, 1983.
  • 51. Rakwitz R., Fiessler B.: Structural Reliability Under Combined Random Load Sequences. Computers and Structures, No 9, 1978.
  • 52. Wu Y.-T, Wirshing P. H.: New Algorithm for Structural Reliability Estimation. Journal of Engineering Mechanics of ASCE. Vol. 113, No 9, 1987, 1319-1336.
  • 53. Ditlevsen O.: Generalized Second Moment Reliability Index. Journal of Structural Mechanics, Vol. 7, 1979.
  • 54. Committee on Fatigue and Fracture Reliability of the Committee on Structural Safety and Reliability of the Structural Division: Fatigue Reliability: Quality Assurance and Maintainability. Journal of the Structural Division, ASCE, Vol.108, No. ST1, 1982, pp. 25-45.
  • 55. Rosenblatt M.: Remarks on a Multivariante Transformations. Annals of Mathematics and Statistics, Vol. 23, 1952.
  • 56. Guohua C., Shuo D.: Study of the Reliability Assessment Methodology for Pressure Vessels Containing Defects. International Journal of Pressure Vessels and Piping, No. 69, 1996, pp. 273-277.
  • 57. Rahman S.: A Stochastic Model for Elastic-Plastic Fracture Analysis of Circumferential Through-Wall-Cracked Pipes Subject to Bending. Engineering Fracture Mechanics, Vol. 52, No 2, 1999, pp. 265-288.
  • 58. Herman Shen M.-H.: Reliability Assessment of High Cycle Fatigue Design of Gas Turbine Blades Using the Probabilistic Goodman Diagram. International Journal of Fatigue, Vol. 21, 1999, pp. 699-708.
  • 59. Cremona C., Lukic M.: Probability-Based Assessment of Maintenance of Welded Joints Damaged by Fatigue. Nuclear Engineering and Design. No 182, 1998, pp. 253-266.
  • 60. Wirshing P. H.: Probabilistic Fatigue Analysis [in:] Probabilistic Structural Mechanics Handbook. Theory and Industrial Applications. Chapman & Hall, New York, Bonn 1995.
  • 61. Sutharshana S. at al.: A Probabilistic Fracture Mechanics Approach for Structural Reliability Assessment of Space Flight Systems. ASTM STP 1122, 1992, 234-246.
  • 62. Mahadevan S.: System Reliability Analysis [in:] Reliability - Based Mechanical Design. Ed. Cruse, T.A., New York, Basel, Hong Kong, 1997, pp. 123-146.
  • 63. Jakubczak H.: Probabilistyczna metoda oceny trwałości zmęczeniowej według metody odkształceń lokalnych. Zeszyty Naukowe Politechniki Opolskiej, Mechanika, z. 64, 2001, ss. 181-168.
  • 64. Zhou J., Shen S.: A Study on the Reliability Assessment Methodology for Pressure Piping Containing Circumferential Defects. International Journal of Pressure Vessels and Piping. Vol. 75, 1998, pp. 679-697.
  • 65. Oziemski S.: Efektywność eksploatacji maszyn. Wyd. ITE, Radom 1999.
  • 66. Wirshing P. H.: Fatigue Reliability for Offshore Structures. Journal of Structural Division of ASCE. Vol. 110. 1984, 2340-2356.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB3-0014-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.