PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A Characterization of the Rivlin-Ericksen Viscoelastic Fluid in the Presence of a Magnetic Field and Rotation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A layer of Rivlin-Ericksen viscoelastic fluid heated from below is considered in the presence of an uniform vertical magnetic field and rotation. Following the linearized stability theory and normal mode analysis, this paper mathematically establishes the condition for characterizing oscillatory motion, which may be neutral or unstable, for rigid boundaries at the top and bottom of the fluid. It is established that all non-decaying slow motions starting from rest, in the configurations, are necessarily non-oscillatory in the regime TAF 2 + TA 4 + Qp2 2 1; where TA is the Taylor number, Q is the Chandrasekhar number, p2 is the magnetic Prandtl number, and F is the viscoelasticity parameter. This result is important, since it holds for all wave numbers for rigid boundaries of infinite horizontal extension at the top and bottom of the fluid, and the exact solutions of the problem investigated in closed form are not obtainable.
Rocznik
Strony
355--355
Opis fizyczny
–-370, Bibliogr. 19 poz., rys., tab., wykr
Twórcy
autor
Bibliografia
  • 1. Benard H. ´ ,Les tourbillions cellulaires dans une nappe liquid, Revue Gen´erale des Sciences Pures et Appliquees, 11, 1261–1271, 1309–1328, 1900.
  • 2. Rayleigh L., On convective currents in a horizontal layer of fluid when the higher temperature is on the underside, Philosophical Magazine, 32, 529–546, 1916.
  • 3. Jeffreys H., The stability of a fluid layer heated from below, Philosophical Magazine, 2, 833–844, 1926.
  • 4. Chandrasekhar S., Hydrodynamic and Hydromagnetic Stability, Dover Publication, New York, 1981.
  • 5. Bhatia P.K., Steiner J.M., Convective instability in a rotating viscoelastic fluid layer, Zeitschrift fur Angewandte Mathematik and Mechanik, 52, 321–327, 1972.
  • 6. Bhatia P.K., Steiner J.M., Thermal Instability in a viscoelastic fluid layer in hydromagnetics, Journal of Mathematical Analysis and Applications, 41, 2, 271–283, 1973.
  • 7. Sharma R.C., Thermal instability in a viscoelastic fluid in hydromagnetics, Acta Physica Hungarica, 38, 293–298, 1975.
  • 8. Sharma R.C., Effect of rotation on thermal instability of a viscoelastic fluid, Acta Physica Hungarica, 40, 11–17, 1976.
  • 9. Oldroyd J.G., Non-Newtonian effects in steady motion of some idealized elastic-viscous liquids, Proceedings of the Royal Society of London, A245, 278–297, 1958.
  • 10. Rivlin R.S., Ericksen J.L., Stress deformation relations for isotropic materials, J. Rat. Mech. Anal., 4, 323, 1955.
  • 11. Sharma R.C., Kumar P., Effect of rotation on thermal instability in Rivlin-Ericksen elastic-viscous fluid, Zeitschrift fur Naturforschung, 51a, 821–824, 1996.
  • 12. Kumar P., Mohan H., Lal R., Effect of magnetic field on thermal instability of a rotatingRivlin-Ericksen viscoelastic fluid, Int. J. of Maths. Math. Scs., 2006, 1–10.
  • 13. Pellow A., Southwell R.V., On the maintained convective motion in a fluid heated from below, Proc. Roy. Soc. London A, 176, 312–43, 1940.
  • 14. Banerjee M.B., Katoch D.C., Dube G.S., Banerjee K., Bounds for growth rate of perturbation in thermohaline convection, Proc. R. Soc. A, 378, 301–304, 1981.
  • 15. Banerjee M.B., Banerjee B., A characterization of non-oscillatory motions in magnetohydronamics, Ind. J. Pure & Appl Maths., 15, 4, 377–382, 1984.
  • 16. Gupta J.R., Sood S.K., Bhardwaj U.D., On the characterization of nonoscillatory motions in rotatory hydromagnetic thermohaline convection, Indian J. Pure Appl. Math., 17, 1, 100–107, 1986.
  • 17. Banyal A.S, The necessary condition for the onset of stationary convection in couplestress fluid, Int. J. of Fluid Mech. Research, 38, 5, 450–457, 2011.
  • 18. Schultz M.H., Spline Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1973.
  • 19. Banerjee M.B., Gupta J.R., Prakash J., On thermohaline convection of Veronis type, J. Math. Anal. Appl., 179, 327–334, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0074-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.