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Abstract: The object of this paper is the implementation of boundary element method to solving the transient heat transfer problem with 
nonzero boundary condition and particularly with periodic boundary condition. The new mathematical BEM algorithm for two dimensional 
transient heat conduction problem with periodic boundary condition is developed and verified. The results of numerical simulation of transi-
ent heat conduction in two dimensional flat plate under non zero initial condition are compared with results obtained with analytical method. 
Then the practical application of developed algorithm is presented, that is the solution of ground temperature distribution problem with os-
cillating temperature of ambient. All results were obtained with a new authoring computer program for solving transient heat conduction 
problem, written in Fortran.  
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1. INTRODUCTION 

The heat transfer in solids, with the changes of temperature 
in time on physical boundaries of analysed objects, occur in many 
engineering mechanisms (engines, compressors), heating and 
cooling systems and hydraulic networks (Zhang et al., 2009; Lu 
and Viljanen, 2006). The analysis of basic mechanism of heat 
transfer in solids, that is heat conduction problem, is significant 
for process of designing and optimization mechanical systems 
and devices. Accordingly, the heat conduction equations with 
conditions of variable temperature or heat flux on boundaries be-
come an important instrument for mathematical description 
of many engineering, geothermal and biological problems. 
As a result, there is a need to develop effective computational 
methods and tools for solving transient heat conduction problem 
(Mansur et al., 2009; Yang and Gao, 2010). 

Two groups of method are applied to obtain transient heat 
conduction problem solution: analytical and numerical.  
In the literature, many analytical methods have been proposed, in-
ter alia based on orthogonal and quasi-orthogonal expansion 
technique, Laplace transform method, Green’s function approach 
or finite integral transform technique, but they are feasible only 
for problems with simple geometries (Singh et al., 2008).  

Monte et al. (2012) presented very accurate analytical solu-
tions modeling transient heat conduction processes in 2D Carte-
sian finite bodies, such as rectangle and two layer objects, 
for small values of the time. In the paper, the geometry criterion 
was provided that permit to use 1D semi-infinite solutions for solv-
ing 2D finite single- and multi-layer transient heat conduction 
problems. Yumrutas (Yumrutas et al., 2005) developed new 
method based on complex finite Fourier transform (CFFT) tech-
nique for calculation of heat flux, through multilayer walls and flat 
roofs, and the temperature on the inner surface. The periodic 
boundary conditions were assumed, that is hourly changeable 
values of external air temperature and solar radiation. Lu et al. (Lu 
et al., 2006; Lu and Viljanen, 2006) adopted the Laplace transform 
to solve the multidimensional heat conduction in composite circu-
lar cylinder and multilayer sphere, with time-dependent tempera-
ture changes on boundary, which were approximated as Fourier 

series. Singh et al. (2008) applied separation of variables method 
to obtain analytical solution, in the form of transient temperature 
distribution, to the 2D transient heat conduction problem in polar 
coordinates with multiple layers in the radial direction. Rantala 
(2005) proposed a new semi-analytical method for the calculation 
of temperature distribution along the fill layer underneath a slab-
on-ground structure subjected to periodic external and internal 
temperature. 

In spite of development of analytical techniques, this methods 
still cannot be employed for solving most practical heat transfer 
problems, such as heat conduction in anisotropic materials, ob-
jects of complex geometries or complex boundary conditions 
(Rantala, 2005; Johansson and Lesnic, 2009). Hence, for last few 
decades, the numerical methods have been strongly developed, 
as more universal computational tool.  

The most popular are mesh methods, such as the finite ele-
ment method (FEM) and the finite difference method (FDM). Alt-
hough this methods are well established and commonly applied to 
transfer heat analysis, in many problems, mesh generation can be 
very laborious and constitutes the most expensive and difficult 
part of numerical simulations. Moreover, in objects of complex ge-
ometries, generated meshes can be distorted, what contributes to 
increase of computational error (Li, 2011). 

The drawback of mesh generation is overcome in the mesh 
free (meshless) methods, that use a set of scattered nodal points 
in considered object (no connectivity among nodes), instead of 
meshes (Cheng and Liew, 2012; Ochiai et al., 2006). Some of this 
methods have been recently applied to transient heat conduction 
analysis in 2D objects, like meshless element free Galerkin 
(EFGM) method (Zhang et al., 2009), meshless local Petrov-
Galerkin (MLPG) method (Li et al., 2011), method of fundamental 
solutions MFS (Johansson and Lesnic, 2008, 2009), meshless lo-
cal radial basis function-based differential quadrature (RBF-DQ) 
method (Soleimani et al., 2010), and in 3D objects, like meshless 
reproducing kernel particle (RKPM) method (Cheng and Liew, 
2012). The disadvantage of this methods, is that, in some cases, 
like transient heat conduction, they are more time-consuming than 
mesh methods, such as FEM, because of the larger dimensions 
of generated matrices (Zhang et al., 2009). 

The alternative for above mentioned mesh and mesh free 
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methods is boundary element method (BEM). Compared to grid 
methods (FDM, FEM), the great advantage of BEM is the possibil-
ity of determination of the solution (both the function and the de-
rivative of this function) at any point of the domain without 
necessity of construction of grids in considered 2D or 3D space. 
The discretization is performed only over the boundary, not over 
the whole analyzed domain hence the size of system 
of equations, that need to be solved, is reduced by one. In BEM, 
the fully populated coefficient matrices are generated, what is the 
opposite of banded and symmetric matrices in FEM. However, the 
small dimensions of BEM matrices counterbalance this disad-
vantage (Katsikadelis, 2002; Majchrzak, 2001; Pozrikidis, 2000). 
Application of the BEM requires the knowledge of fundamental so-
lution of the governing differential operator, but at the same time, 
the use of fundamental solution stabilize the numerical commuta-
tions (Ochiai et al., 2006). 

The BEM is successfully applied to steady and unsteady heat 
conduction problems. As opposed to steady problem, 
in mathematical description of transient heat conduction, the do-
main integrals occur. In order to keep the boundary character 
of the method, many different techniques have been developed, 
but the most popular are: method using the Laplace transfor-
mation to eliminate the time derivative, the dual reciprocity meth-
od, and the convolution scheme (employing time-dependent 
fundamental solutions). 

Erhart (Erhart et al., 2006) implemented the Laplace transfor-
mation for solution of transient heat transfer in multi-region ob-
jects. As a result the time-independent boundary integral equation 
was produced, solved further with a steady BEM approach. 
The last step was numerical inversion of the solution, done with 
the use of Stehfest method. The derived algorithm was applied 
to heat conduction in a bar, laminar airfoil with three cooling pas-
sages and non-symmetric airfoil. The results were compared with 
those obtained with finite volume method (FVM).  

Sutradhar and Paulino (2004) also used the Laplace transfor-
mation, both with Galerkin approximation, for analysis of the non-
homogenous transient heat conduction problem in functionally 
graded materials FGM of variable thermal conductivity and specif-
ic heat. The three kinds of material variation, that is quadratic, ex-
ponential and trigonometric, were assumed for verifying the 
accuracy of presented method. The practical example for the 
functionally graded rotor problem was carried out. 

Another approach is Fourier transform, applied by Simoes 
(Simoes et al., 2012) and Godinho (Godinho et al., 2004), consist 
in three general steps: converting analyzed domain into frequency 
domain, solving the heat conduction problem with BEM and ob-
taining the final solution in time domain with the use of inverse 
Fourier transform. Simoes tested method in 2D object with unit ini-
tial temperatures and with non-constant temperature distribution 
in domain. Godinho analyzed transient heat conduction around 
a cylindrical irregular inclusion of infinite length, inserted in a ho-
mogeneous elastic medium and subjected to heat point sources 
placed at some point in the host medium. 

Mohammadia (Mohammadia et al., 2010) solved 2D nonlinear 
transient heat conduction problems with non-uniform and nonline-
ar heat sources, with the new BEM approach, using time-
dependent fundamental solutions. In this method temperature 
is computed on the boundary and in internal points at every time 
step, and the results constitute the initial values for the next time 
step. However, for 3D and large problems, the storage of coeffi-
cient matrices for every time step can be problematic (Erhart 
et al., 2006).  

Tanaka et al. (2006) applied dual reciprocity boundary ele-
ment method (DRBEM) for analysis of 3D transient heat conduc-
tion problem in nonlinear temperature-dependent materials. 
In proposed method, domain integral is transformed into boundary 
integrals with the use of radial basis functions. To entertain the 
material nonlinearity, the iterative solution procedure was em-
ployed. Białecki et al. (2002) proposed the DRBEM without matrix 
inversion for linear and non-linear transient heat conduction prob-
lem, that reduce the time of computations. The method was ap-
plied to solve heat transfer problem in a turbine rotor blade. Ochiai 
(Ochiai et al., 2006; Ochiai and Kitayama, 2009) developed the 
triple-reciprocity BEM to solve 2D and 3D transient heat conduc-
tion problems. One of the recent methods is radial integration 
boundary element method RIBEM applied to transient heat con-
duction problem by Yang and Gao (2010), which can be employed 
to analysis of functionally graded material problems.  

In this paper, BEM is applied to solve the unsteady heat con-
duction problem in 2D area of arbitrary shape of boundary line in 
particular case of periodic changes of temperature on boundary 
line. The new mathematical BEM algorithm for periodic boundary 
condition was developed, both with a new authoring computer 
program, written in Fortran, applied to verifying the accuracy 
of presented algorithm and to solving practical example.  

2. TRANSIENT HEAT CONDUCTION 

The thermal processes, in which the heat conduction is the 
main mechanism, are described by Fourier-Kirchhoff equation. 

The unsteady heat conduction in homogeneous solid sub-
stance with constant material properties without inner heat 
sources, is described by the heat conduction equation (also 
named thermal diffusion equation) 

2 1
0

∂ 
∇ − = α ∂ 

( , , )T x y t
t

          (1) 

 In the above equation α=λ/c  is the thermal diffusivity, 
in which λ is the thermal conductivity and c is the volumetric spe-
cific heat; and ∂ ∂/ t is the local time derivative. 

In order to find the solution of this equation, it is necessary to 
introduce the boundary conditions (1a) and (1b), and initial condi-
tion (1c) that take the following form: 

( , , ) ( , , ) ,                             ( , )= ∈L qT x y t T x y t x y L      (1a) 

( , , )
( , , ) ( , , ) , ( , )

∂
= −λ = ∈

∂ L T
T x y tq x y t q x y t x y L

n
    (1b) 

0( , ,0) ( , ) , ( , )= ∈ΛT x y T x y x y      (1c) 

The boundary conditions (1a) and (1b) assume respectively 
the value of temperature at point p(xp,yp) on boundary (Lq) (Di-

richlet boundary condition), and the value of heat flux at any point 
p(xp,yp) on boundary (LT) (Neumann boundary condition). 

The initial condition (1c) assumes the value of temperature 
at point v(xv,yv)  inside the domain at initial time t=0. 

Particular form of the boundary problem for transient heat 
equation (1) is the formulation with the condition of periodic 
changes of the temperature on the boundary, which takes the fol-
lowing form: 

( , , ) cos(ω ) , ( , ) ( )T x y t T t x y L= ∈%     (1d) 
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where T%  is the amplitude of the temperature oscillations. 
The sketch for two dimensional boundary problem analysis 

of Fourier equation (1) is shown in Fig. 1.  

 
Fig. 1. Sketch for the two dimensional boundary problem analysis  
           of Fourier equation 

3. PROBLEM FORMULATION  

The fundamental solution of heat conductivity equation (1), al-
so called Green function for heat equation, and its normal deriva-
tive for two dimensional problems are given by: 

2
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The solution of the Fourier first problem in closed domain (Λ) 
is described by the sum of double layer heat potential and Pois-
son-Weierstrass integral: 
 
 
 
 
 
 
 
                 (3) 

Density T(q,τ) of double layer potential satisfies integral 
equation on boundary line (L):  
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The solution of the Fourier second problem in closed domain: 
(Λ) is described by the sum of single layer heat potential 
and Poisson-Weierstrass integral: 
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Density q(q,τ) of single layer potential  satisfies integral 
equation on boundary line (L):  
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3.1. Boundary integral equation for heat conduction equation 

 The mixed internal Fourier problem for differential equation (1) 
with conditions (1a,1b) and (1c) in two dimensional area (Λ) has 
the general solution of the integral form (Brebbia et al, 1984)  
 
 
 
 
 
 
 
 
 
 
 
               ,    (5) 
 

where p and q, v are respectively source and field points within 

the domain (Λ) or on the boundary (see Fig.1) and [t0 , tK] is the 
analyzed time interval. Coefficient χ(p) is related to the local ge-
ometry of the boundary at point (p). For smooth boundary point 
χ(p)=1/2 and for an internal point χ(v)=1. 

Unknown functions in integral equation (5) are: temperature 
T(q,τ) on the part (Lq) of boundary line and heat flux on the part 

(LT) of boundary line, whereat L= LqU LT. 

 In the simplest method of discretization the integral equation 
(5) in relation to time, it is supposed that the time variations of the 
functions T(q,τ) and q(q,τ) are small as compared to functions 
T*(p,q;tk,τ) and Q*(p,q;tk,τ). It can be reasonably assumed 
that the functions T(q,τ) and q(q,τ) are also constant in small 
time period [tk-1,tk] (Wrobel, 2002; Kythe, 2005). 

Accordingly to the above assumption the integral equation (5) 
can be denoted in the form: 
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where the kernels % *( , ; ,τ)kT tp q  and % *( , ; ,τ)kQ tp q are given 

by expression: 
 
 
 
 
 
 
 
 
 
 
         ,           (6a) 
 
 
where Ei(.) is the exponential integral function: 
 
 
 
 
 
 
 
 
 
 
           ,         (6b) 
 
 
where  / /x yd r y l r x l= ⋅ ∂ ∂ − ⋅ ∂ ∂pq pqq q

 . 

3.2. Boundary integral equation for heat conduction  
       equation with periodic boundary condition 

The unsteady heat conduction problem in two dimensional ob-
ject with condition of periodical changes of temperature on 
boundary line is described by the equation (1) with periodic 
boundary condition (1d).  

In this case, the temperature may be treated as the function: 

 ( , , ) ( , )exp( )T x y t U x y i t= − ω            (7) 

where only the real part of the above expression has physical 
meaning as consequence of boundary condition (1d) and the 
basic relation for complex functions: exp(-iz)=cos(z)-isin(z). 
 Inserting space and time derivatives of the temperature, ex-
pressed by relation (7), to the equation (1), leads to the modified 
Helmholtz differential equation for function U≡U(x,y) (Sorko and 

Karpowich, 2007). 

2 2ˆ 0U k U∇ − = ;   where ˆ ω αk i= −             (8) 

The integral solution of differential equation (8) has the form: 
 
 
 
 
 
                 (9) 
 
 
where Green function G(p,q) of the Helmholtz equation is given 
by a modified Bessel function: 
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  Taking the limit as the source point p approaching contour 
(L), where function U(q) is equal to the amplitude of the tempera-
ture oscillations and expressing the limit of the double layer poten-
tial in equation (9) in terms of its principal value (when p≡q), one 
obtains integral equation of the first kind for the normal derivative 
of the function U(q) 
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 Separating the real part and imaginary part of kernels in inte-
gral equation (10), one receives the system of two integral equa-
tions in relation to functions F(q)=(FRe(q),FIm(q)), which are 
the derivatives of function U(q). 
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 After determination of discrete values FRe(q), FIm(q) on the 

boundary (L), the values URe(q), UIm(q) of the function U(q) at 
points of domain (Λ) are obtained from the system of equations  

= +∫ ∫%
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4. NUMERICAL SOLUTION OF INTEGRAL EQUATION 
OF HEAT CONDUCTION WITH PERIODIC BOUNDARY 
CONDITION 

 Numerical solution of integral equations in two dimensional 
problems consists in discretization of the boundary line into 
straight or arc elements with constant or linear distributed value 
of investigated function and consequently, the integral equation 
transforms to the system of algebraic linear equations in relation 
to the unknown integrand. 

 
Fig. 2. Discretization of area (Λ) 

Discrete solution of integral equation (6) can be obtained di-
viding the boundary line (L) into I (i=1,2,3,...,I) ,straight line ele-
ments, domain (Λ) into N (n=1,2,3,...,N) surface elements and 
time interval [t0,tK] into K (k=1,2,3,...,K) subintervals (Fig. 2). 

Using the nodal values, with assumption that the functions 
T(qjτ) and q(qj,τ) are constant on each linear element Lj, func-

tion T0(vn) is constant on each surface element Sn and also they 

areconstant at any subintervals [tk-1,tk], the boundary integral 
equation is obtained in discrete form as follows: 
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 Similarly, the integral equation (10) expressed with the system 
of two integral equations (10a) and (10b), describing properly 
the real part and the imaginary part of the function, 
by discretization of the boundary line moves to two systems 
of linear equations: 
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∑ ∑q p q p q% % %       (14a) 

1 1

1

2
( ) ( , ) ( , )

j J

Im j Im i j Im i j
j j

F G T H

= =

 
 = −
  

∑ ∑q p q p q% % %       (14b) 

where: 




= 



= 



∫

∫%

( )

( )

( , ) ( , )

( , ) ( , )

Re i j Re i j j

L j

Re i j Re i j j

L j

G G dL

H H dL

p q p q

p q p q

        (14a*) 




= 



= 



∫

∫

%

%

( )

( )

( , ) ( , )

( , ) ( , )

Im i j Im i j j

Lj
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5. EXAMPLES 

Basing on developed BEM algorithm, a new authoring com-
puter program was written in Fortran, which was applied to the fol-
lowing examples. 

Example 1:  

 The accuracy of the formulation was tested by computing the 
heat field in a finite square a=1.0 m, when non zero initial temper-
atures are prescribed inside the domain and variable tempera-
tures are assumed on the boundaries. 

The thermal properties of the homogeneous medium are as-
sumed to be: thermal conductivity λ=200.0 W/(mK), volumetric 
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specific heat c=2.0 106 J/(m3K), which defines a thermal diffusivity 
α=1.0 10-4 m2/s. 

The temperature distribution on the boundary at t0=0 
is described by the relations: 

 

(15a) 

and the initial temperature distribution, satisfying the boundary 
conditions described above, is given by the relation:  

( , ,0) 100.0 (1.0 cos(0.5π )sin(0.5π )T x y x y= ⋅ −      (15b) 

and is presented on the sketch (Fig. 3b.) 

 

Fig. 3a. The unit square and boundary conditions 

 
Fig. 3b. Temperature distribution in the unit square  

 The field of the temperature is symmetrical in relation to the 
diagonal of the square, so the time changes of the temperature 
can conveniently be presented along the line x=y.  

Temporal evolution of the temperature T=f(t) along diagonal 
of the square is shown on sketch (Fig. 4.) and the changes of field 
temperature are presented on sketch (Fig. 5.) 

The presented above problem has the analytical solution as 
follows 

2 π π
( , , ) 100 1 exp( 2π α )cos sin

2 2

x y
T x y t t

    
= ⋅ − −    

    
(15c) 

In numerical solution of considered problem with the boundary 
element method one assumes: 400 similar line elements on 
boundary, 100 square elements with collocation points in the ge-
ometrical center of every area  the temporary step ∆t =1.0 
at estimated time  tmax=3600. 

 
Fig. 4. Temperature distribution T=f(t) along diagonal of the square 

 
Fig. 5. Temperature distribution T=f(t) in the square 

 The maximum error of numeric solution, estimated from rela-
tion: 

δmax=100(T(x,y,t)th-T(x,y,t)num)/T(x,y,t)th,               (16) 

does not exceed the value 0.1%. 
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Example 2: 

In technical problems of optimization the devices using re-
newable thermal energy, that for designing ground heat exchang-
ers (horizontal and vertical) of heat pump systems, it is necessary 
to determine the annual ground temperature distribution for vari-
ous values of ground thermal conductivity coefficient. This prob-
lem is the subject of many empirical studies, leading to 
formulation of complex empirical formulas describing the annual 
temperature propagation.  

The mathematical description of ground temperature distribu-
tion problem consists in solving the transient heat conduction 
problem in homogeneous or heterogeneous area with constant 
thermal conductivity coefficient and with boundary conditions as-
suming the heat flux on the boundaries of value equal 0 (Fig. 6). 
On the ground surface the boundary periodic condition is as-
sumed, that is the changeable annual temperature of ambient in 
the form: 

= + Δ cos(ω )u sa aT T T t              (17) 

The problem can be considered in heterogeneous area com-
posed of layers of known thickness and known values of thermal 
conductivity coefficient. 

− 
− 
∆ −


− 

u

sa

a

sg

T

T

T

T

 temporary temp. of ambient

 mean annual temp. of ambient

 annual amplitude of ambient

 mean temperature of ground

 

Fig. 6. Area with boundary temperature and heat flux 

 
Fig. 7. Temperature profile in the ground 

The Fig. 6 shows the sketch of area with boundary condi-
tions of considered problem. The solution of the problem, in the 
form of unified temperature distribution (8) from the surface layer 
to layer of constant temperature at every moment of cycle 
of annual changes of temperature, is presented in the Fig. 7. 

6. CONCLUSIONS 

In this paper the utility of the boundary element method 
for solving the transient heat conduction problem with periodic 
boundary condition is proved. The general solutions of Fourier 
equation with initial and boundary value problems are introduced, 
on the assumption that temperature changes periodically on the 
boundary. The new mathematical algorithm is developed, which 
is further verified by solving transient heat conduction problem 
in two dimensional area. The comparison between analytical 
and numerical solution of test problem proves the great accuracy 
of proposed BEM algorithm. Finally, the method is applied to solve 
the ground temperature distribution problem with the boundary 
condition of the oscillating temperature of ambient. All numerical 
computations were made with the use of a new computer pro-
gram, written by authors, in Fortran. 

Although, the boundary element method is not so widely ap-
plied, as an efficient numerical method and computational tool, 
constitutes the great alternative to popular mesh methods (FEM, 
FDM), and can be successfully employed for analysis of many 
engineering problems.  
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