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Abstract: The purpose of the paper is to study the problem of controllability of linear control systems with control constrains, defined 
on a time scale. The obtained results extend the existing ones on any time domain. The set of values of admissible controls is a given 
closed and convex cone with nonempty interior and vertex at zero or is a subset of  �� containing zero. 
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1. INTRODUCTION 

The paper deals with linear control systems �∆��� =	������� + 	������� defined on a time scale �. We assume 
that : � → �,	where � is a subset of ��. In systems theory 

linear systems have (by definition) � = ��, but in many practical 

situations  the set � should be bounded, see for example Abel 
(2010). A restriction on controls brings some difficulties with con-
trollability conditions. For example (The example comes from 

Sontag (1998)), let us take a system �����/�� = −x + u and 
let u: �0, +∞� → �−1,1�. It is easy to see that the pair �A, B�	is controllable, but the system with restricted controls 

is not, since it is impossible to transfer the state x� = 0 to x� = 2	(we have �����/�� < 0 whenever ���� ∈ �1,2��.  
 For continuous-time linear systems, the problem of controlla-

bility with control constrains has been sudied for example in Ah-
med (1985), Chukwu and Lenhart (1991), Klamka (1991), Path et 
al., (2000), Schmitendorf and Barmish (1981), Sontag (1998). For 
discrete-time case – in Benzaid and Lutz (1980), Path et al., 
(2000). 

Analysis on time scales is nowadays recognized as the right 
tool to unify and extend the existing results for continuous- and 
discrete-time dynamical systems to the nonhomegonous time 
domains, see for example Bartosiewicz and Pawłuszewicz (2006), 
Bartosiewicz and Pawłuszewicz (2008), Davis et al., (2009), 
DaCunha and Davis (2011), Gravagne et al., (2009), Ferreira and 
Torres (2010), Pawłuszewicz and Torres (2010).   

A time scale is a model of time. Besides the standard cases 
of the whole real line (continuous-time case) and all integers 
(discrete-time case) there are many other models of time included 
that can be partially continuous and partially discrete, q-scales, 
quantum time scales (objects with non-uniform domains), and 
many others – see Bohner and Peterson (2001).  However, dis-
crete-time systems on time scales are based on the difference 
operator and not on the more conventional shift operator. One 
of the main concepts in the time scale analysis is the delta deriva-
tive, which is a generalization of the classical (time) derivative 
in the continuous time and the finite forward difference in the 
discrete time. Similarly, the integral of a real function defined 
on a time scale is an extension of the Riemann integral in the 

continuous time and the finite sum in the discrete time. As a con-
sequence, differential equations as well as difference equations 
are naturally accommodated in this theory.  

The goal of this paper is to study conditions under which a lin-
ear system defined on a time scale with control constrains 
is controllable. For this aim, in Section 2 gives general information 
about solution of considered class of systems. Section 3 is devot-
ed to the investigation of the problem of null-controllability of time-
varying systems with control constrains. It also presents the nec-
essary and  sufficient conditions for global null controllability 
for the systems with control constrains on homogenous time 
scale. In Section 4 linear time-invariant systems with control con-
strains are studied. The main result of this Section is that such 
a system is controllable if and only if  the Kalmann rank condition 
is satisfied.  

The necessary elements of delta-measurability and nonlinear 
theory on time scales are presented in Appendix. At this moment 

we only introduce the following notation: if #, $ ∈ �, # ≤ $,	then �#, $]' denotes the intersection of the real closed interval �#, $] 
with �. A similar notation is used for open, half-open, or infinite 
intervals. 

2. LINEAR SYSTEMS ON TIME SCALES 

Let T  be any time scale and let 	 ⊂ �.  Recall (see Cabada 

and Vivero (2005)) that a function *: � → � is absolutely contin-

uous on a  time scale �  if and only if *	 is continuous and 
of bounded variation on T and f maps every ∆-null subset of T	in-

to a null set. Let ,∆-  denote spaces linked to the Lebesgue ∆-

measure and absolutely continuous function on arbitrary closed 

interval of time scale �. We say that	* ∈ ,∆-�.� provided that / |*���|-∆� < ∞	if 2 ∈ �, 2 < ∞, Agrawal et al (2006), Caba-

da and Vivero (2006).  

Let I be the identity 4 × 4 - matrix and	6 ∈ �7×7. Recall that 

the matrix ∆-differential system defined on time scale �: 

8∆��� = 6���8���										8���� = 9                   (1) 

for any 8 ∈ �7, t ∈ �t�, supT�=, has a unique solution X��� =?@�A���, ���. Using the same arguments as in Bartosiewicz and 
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Pawłuszewicz (2006) for time-invariant case, we can show that for 

every �, B, C ∈ � such that � ≤ B ≤ C the following hold:  

− Φ���, B� = 9, Φ@�A���, �� = 9; 
− If  6���

 
is an regressive matrix, i.e. if matrix E9 + F���G6��� 

is invertible, then Φ@�A���, B� = �Φ@�A��B, ���HI; 

− Φ@�A���, B�Φ@�A��B, C� = Φ@�A���, C�. 
If Z	is time-invariant, the solution of the equation (1) is given 

by an exponential  matrix function on time scale T X�t� =eL�t, t��, see: Bartosiewicz and Pawluszewicz (2006), Jackson 
(2007).  

Let  us consider a linear control system defined on T:	 
�∆��� = 	������� + 	�������,			����� = ��              (2) 

where 	��� ∈ �7×7 and ���� ∈ �7×� are rd-continuous matri-

ces on	�, i.e. each entry of these matrices is an  rd-continuous 
function on �. Also ���� ∈ M ⊂ �7 and ��� ∈ � ⊂ ��. Let 

us choose a control  . The trajectory of system (2) is a function N�⋅, ��, ��, �: ���, B2��' → Σ that is the unique solution 
of (2), provided it is defined on ���, B2��' and for all � ∊���, B2��', ���� ∊ Ʃ. This solution for all � ∊ ���, B2��' 
is given by (see Bartosiewicz and Pawłuszewicz (2006)):  

�R = ΦS��R , �����+/ ΦS T�R , U�B�V ��B��B�∆BAWAX               (3) 

If A is a regressive matrix, i.e. if the matrix E9 + F���G	��� 
is invertible, then (3) describes both forward and backward trajec-
tories of (2). 

We say that a control u is admissible for �� ∈ �7 if there ex-

ists a trajectory of system (2) from x� corresponding to u. The set 
of all admissible controls (for	��) will be denoted by �YZ . 

Let . = ���, �R]'. Assume that the set of the values of ad-

missible controls U is a given closed and convex cone with 
nonempty interior and vertex at zero. Thus the set of admissible 

controls �YZ  for system (2) has the form ,∆\ �., ��, i.e. is a Ba-

nach space endowed with the norm defined for every : . →�	as:  

||||]∆̂ ≔ `a ||\���∆�b c
I \d

 

3. TIME-VARYING SYSTEMS WITH CONTROL CONSTRAINS 

Let Σ ⊆ Rg. We say that system (2) is: 

− U-controllable on a time interval ���, �R]'	if, for any �� ∈ Ʃ 

and any �R  there exists a control  ∈ ,∆\ �., �� such that NE�R , ��, ��, G = �R , �R ∈ Ʃ. 
− �-controllable if it is �-controllable on every time interval ���, �R]'. 

− locally �-controllable on ���, �R]'
 
if, for the given trajectory N�⋅, ��, ��, � = ��⋅�

 
of (2) with � ∈ ,∆\�., �� and ����� = �� ∈ Ʃ there exists a neighborhood hiX  of  �� such 

that, for any j ∈ hiX  there exists an admissible control 
0
u  

such that NE�R , ��, ��, G = �R ∊ hiX .  

If �R = 0, then we have respectively null U-controllability 

on a time interval ���, �R]'		null U-controllability, local null  

U-controllability. 
Our goal is to show certain properties characterizing the null U-controllability. Let us assume that there exists a unique evolu-

tion operator ϑ defined as k?lS��, B�: �� ≤ B ≤ � ≤ �R; 	��, B, �,�R ∈ �m and corresponding to the ₳ = o	���: � ∈ ���, B2��'p 
in (2). The ideas of proofs of next two  propositions come from 
Chuwku and Lenhart (1991). 
Proposition 1. Let us assume that system (2) is null  �-controllable on ���, �R]'. Then there exists a bounded operator q: Ʃ → ,∆\�., �� such that, with the admissible control  =q��, the solution of (2) satisfies �E�RG = NE�R , ��, ��, q��G =0.

  
Proof: For arbitrary initial state ��, let �A: Ʃ ⨯ �YZ → Ʃ be a 

map defined as �A���, � ≔ N��, ��, ��, � for any � ∈���, �R]'. Then �A is the continuous linear map with respect to . 

Let us consider also a map sA:	,∆-�.� 	→ 	Ʃ defined as: 

sA��: = a ΦSE�, U�B�G��B�∆BA
AX

 

for any � ∈ ���, �R]'.
 

Note that sA is linear, bounded and �A���, � = ?S��, ����� + sA��. Since for all �R ∈ �
 
 

ΦSE�R , ��GƩ ⊂ sAW T,∆
\�., ��V		then, from definition, this condi-

tion is equivalent to the null U-controllability of (2).  

Let us consider a map Ϛ: Nv → sAW T,∆
\�., ��V, where Nv 

denotes the orthogonal complement of the null space of sAW. 

Define q�� ≔ −ϚHI?S��, �����. Note that by Banach Theorem 
and closed graph theorem this operator is bounded (see Musielak 
(1989)).  Moreover:   

NE�R , ��, ��, q��G =
ΦSE�R , ��G�� + sAW�−ϚHI�ΦSE�R , ��G�� = 0			  
Proposition 2: Suppose that zero belongs to the interior of the 
set of admissible controls. If the system (2) is null U-controllable, 
then it is locally null U-controllable. 

Proof follows from the fact that map q defined in  Proposition 

1 is continuous at 0. This implies the existence of an open set W� 

containing 0 and such that q�x�� ⊂ h ⊂ y4��YZ . Hence, the 
state 0 can be achieved from any �� ∈ x� using  = q��.  

Other conditions for null U-controllability can be obtained un-
der exponential stability assumption. Recall that system (1) de-
fined on unbounded time scale T with bounded graininess func-

tion F: � → �z ∪ o0p is exponentially stable if there exists 

a constant | > 0	such that for every �� ∊ � there exists ~ =~���� ≥ 1 with  

||Φ@�'���, ���x(���|�≤ ~�H��AHAX��| x(���||  
for any t ∈ �t�, sup�=; ||. || denotes the classical Euclidian norm. 
Proposition 3. If system (2) is null �-controllable on each time 

interval ���, � + U����', ���, B2��', and the system �∆��� =	�������, ����� = ��, is exponentially stable, then the system 
(2) is null �-controllable. 

Proof:  By Proposition 2, null �-controllable of the given system 

implies local null �-controllability of this system. Then there exists 

a neighborhood hiX  of �� such that all states from hiX  can be 

steered to 0 with  ∈ �YZ . 
Let j ∈ hiX .  Exponential stability of the system �∆��� =	�������, ����� = j, implies existence �R�  such that the 

solution of  this equation satisfies ���R�� = �R� ∈ hiX . If we take 

as an initial data ��R� , �R��, then there exists �R̂ ∈ ��R� , B2��',
 

such that, for some � ∈ �YZ  
holds NE�R� , �R� , ��, �G = �R�  and 
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NE�R̂ , �R� , ��, �G = 0. Taking as a  control multifunction ���� ≔���
 
for � ∈ ���, �R�]' and ����: = ���� for � ∈ ��R� , �R̂ ]' (with 

swithching time �R�), state j can be transferred to state 0 in time � ∈ ���, �R̂ ]'.  

       

Let 8 = o� ∈ �7: ,� = �p
 

where , is a given 2 × 4- 

matrix of the rank 2 and � ∈ �7 is a given vector. For any vector # ∈ �-
 let q��#� = sup	o�','#:� ∈ �p  denote the support 

function of a set �. 
Theorem 1: Let � be a time scale with a constant graininess  F. 

The system (2) is globally null �-controllable if and only if for 

every admissible control  holds 

/ q�E�'�B�ΦS'���,U�B��,'#G∆B = +∞							�AX          (4) 

where �'denotes the transposition matrix of �. 
Proof: For � = � the theorem was proved in Schmitendorf and 
Barmish (1981), Klamka (1991) and, using more general ap-
proach, in Path et al., (2000). The proof for � = ℎ6, ℎ > 0, 
mimics the one given in Path et al., (2000) for discrete-time sys-
tems.  

In continuous-time case, relation (4) can be formulated 
in terms of the solution of the adjoint equation Ahmed (1985), 
Path et al., (2000). For time scale system (2) such reformulation 
requires an assumption that matrix 	 is regressive for all � ∈ ��.  

4. LINEAR TIME-INVARIANT SYSTEMS  
WITH CONTROL CONSTRAINS  

Let us consider a linear time-invariant control system defined 

on a time scale T: 

�∆��� = 	���� + 	����									����� = ��               (5) 

where: 	 ∈ �7×7, � ∈ �7×�, ���� ∈ M ⊂ �7 , ��� ∈ �. As 
previous, we assume that the set of values of admissible controls U�� is a given closed and convex cone with nonempty interior and 
vertex at zero. The matrix: 

�AW = a �S���, B���'�S'AW
AX

���, B�∆B 

is called the controllability gramian. If there exists �R ∊ �	such 

that the matrix �AW	is nonsingular and 		 is a regressive matrix, 

then using control:  

���� = −�'�S'���, U�B��	�AWHI��SE�R , ��G��-�R ] 

every state x� = x�t�� can be achieved from an initial state x�. 

Proposition 4. Let 0 ∈ y4��YZ . If the system (5) is controllable 

and matrix 	 is regressive, then it is locally null �-controllable.  

Proof: If �R ∈ �	is arbitrary, then there exists a control ��B� =−�'�S'E��, U�B�G�AWHI�SE�R , ��G�, B ∈ ���, �R]', such that sta-

te x can be steered to 0 in a finite time. Since  map � → �S��, ��� 
is rd-continuous, then there exists a constant ~ such that �|��B�|� ≤ ~�|�|�, B ∈ ���, �R]'. Hence the  thesis.   

 Let T be an unbounded time scale. Recall that system (5) 
is stabilizable (see Bartosiewicz et al.,, (2007)) if there exists 
a state feedback ��� = �����, for � ∈ ��×7, such that the 

closed loop system �∆��� = �	 + ���x��� is exponentially 

stable. The set of exponential stability on a time scale � is defined 
as (see Pötzsche et al., (2003)): 

s��� ≔ s���� ∪ s���� 
where:	s���� =�� ∈ �: limA→∞ B2 I

�HAX / lim�→���� �� |Iz�¡|�
�AX ¢£ < 0¤ 

s���� = o	� ∈ �: ∀¦ ∊ �	∃£ ∊ �, £ > ¦: 1 + F�£�� = 0p 
For the arbitrary time scale � it holds that s���� ⊆ o� ∈�: ��� < 0p and s���� ⊂ �−∞, 0�.  

Theorem 2. (Pötzsche et al., (2003)) The following holds: 
a) If (5) is exponentially stable then B2���	� ⊂ s���.  
b) If 	 is diagonalizable, then (5) is exponentially stable if and 

only if B2���	� ⊂ s���  

where: B2���	�  denotes the set of all eigenvalues of 	. 
Since the null �-controllability is a particular case of  �-controllability, we can reformulate the result from Bartosiewicz 

et al., (2007) as follows: 
Theorem 3. Assume that F��� is bounded. If system (5) is null  �-controllable, then it is stabilizable. 

Lemma 1. If system (5) is stabilizable then it is �-controllable. 
Proof: The idea of the proof is based on Zabczyk (1995).   Using 

classical arguments one can easily deduce that if the pair �	, �� 
is controllable, then there exists a matrix � ∈ ��×7 and a vector ¨ ∈ ��  such that the pair �	 + ��, �¨� is controllable.     

Let © ∈ �7×7 be a nonsingular matrix such that ©	©HI =
ª	II 	I\0 	\\«, ©� = ¬�I0  and the pair �	II, �I�,				II ∈
�®×® , �I ∈ �®×�, is controllable. 

Since system (5) is stabilizable, then there is a matrix � ∈ ��×7, such that the closed loop system �∆��� =�	 + ������� + ��¨���� is exponentially stable. The charac-
teristic polynomial of 	 + �� is of the form: 

2Sz¯°��� = det��9 − �	 + ���]= det��9 − ©	©HI − ©��©HI�= det��9 − �	II©HI + �I��] det��9− 	\\� ,						� ∈ �. 
So, for any �, B2���	\\� ⊂ B2���	 + ��� ⊂ s��� and, 

if there exists | > 0 such that for every �� ∈ � there is ~ ≥ 1  

then | ≤ −B2	o���: � ∈ 	B2���	\\�p. Hence the contradic-
tion with stabilizability of (5).  

Exponential stability and Proposition 2 imply the following. 

Proposition 5. If 0 ∈ �YZ  system (5) is �-controllable and expo-
nentially stable, then it is null �-controllable. 

       Let 	iX,�²³(��, �R� be a reachability set of  system  (2), i.e. 

a set of all points that can be reached at time �R  starting from �� = �����. The set of all points that can be reached from �� 

at �� in a finite time will be denoted as 	iX,�²³(���. The 

image of the map  ↦ NE�R , ��, ��, G, i.e. the set 	iX,�²³(��, �R� is a linear subspace of 	�7 and:  

	iX,�²³(��, �R� = 	ΦSE�R , ��G�� + 	�,�²³(��, �R� 
Using classicall arguments, similarly as in Sontag (1998) we 

can show the following: 

− if  � is convex, then 	µ,�²³(��� is a convex subset of  �7; 

− suppose that 	 is regressive. If system (5) is �-controllable 

and �YZ  is a neighborhood of 0 ∈ �7 then 	µ,�²³(��� 
is an open subset of �7

 . 
Collorary 1. Suppose that 0 ∈ y4�� system (5) is stabilizable 
and matrix 	 is diagonalizable. Then system (5) is null  �-controllable. 
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     For each eigenvalue λ of the matrix 	, let ¶·,¡ ≔ker��9 − 	�·  and ¶·,¡	� ≔ k��¨: ¨ ∈ ¶·,¡m. Let , =⋃ ¶·,¡	��»¡¼�  and � = ⋃ ¶·,¡	��»¡½� . If � is an open convex 

subset of �7
, ,	is a subset of �7contained in �, then � + � =�, see Sontag (1998). 

Lemma 2. Let 	 be an 4 × 4 −matrix  with eigenvalues  �I, … , �7. If  system (5) is �-controllable and �YZ  is a neighbor-
hood of 0, then  , ⊆ 	µ,�²³(��� .  
Proof:   Without loss of generality we assume that �YZ   is a 
convex neighborhood of 0. Using mathematical induction with 

respect to ¿, we show that ¶·,¡	� ⊆ 	µ,�²³(���. 
 For k = 0, the case is trivial. Let us assume that ¶·HI,¡	� ⊆	µ,�²³(���, � = | + yÀ, |, À ∈ �, and take any ¨̅ ∈ ¶·,¡ , 	¨̅	= ¨̅I + y¨̅\. Then for  any t ∈ �t�, sup�=, �¡��, ���	= ����, ���. Since 0 ∈ intU�� we can choose any Ã > 0  

such that ¨I ≔ Ã¨̅I ∈ 	µ,�²³(���. Moreover, since  ¨ ∈ ¿�C��9 − 	�·   and �S��, ��� = ∑ 	·ℎ·��, ���∞·Å� , where ℎ���, ��� ≡ 1, ℎ·zI��, ��� = / ℎ·�¦, ���∆¦AAX   (see Mozyrska 

and Pawłuszewicz (2008)), then: 

�S��, ���¨ = ÇÈ	·ℎ·��, ���
∞

·Å�
É ¨ = ¨ + � 

with � ∈ ¶·HI,¡	. So,  ����, ��� = �¡��, ��� = �¡��, �����SH¡Ê���, ���¨ −	�¡��, ����= �¡��, �����SH¡Ê���, ���¨ − ����, ���� 

Moreover,  since � = �I+i�\, then:  

�������, ���¨I� = �S��, ���¨I + ��Ê��, ����I ∈ 	iX,�²³(��, �� +	 ¶·,¡	� ⊆ 	�,�²³(��� 
L is the sum of the spaces ¶·,¡	�  over all eigenvalues λ with the 

real part nonnegative, and each of these spaces is included 	µ,�²³(���, so the sum of the L’s is included in 	µ,�²³(���. 
The ideas of the next Lemma and next Theorem come from 

Sontag (1998). 

Lemma 3. Let B2� = ∞. If system (5) is �-controllable, �YZ  

is a convex, bounded neighborhood of 0, then there exists a set 	Ì such that 	µ,�²³(��� = Ì + , and Ì is bounded, convex 

and open relative to �. 
Proof: Note that (see Sontag (1998)):  

	�	µ,�²³(��� ∩ �� + , ⊆ 	µ,�²³(��� + , = 	µ,�²³ (��� 
and 	µ,�²³(��� ⊇ �	µ,�²³(��� ∩ �� + , 

Let Ì ≔ 	µ,�²³���� ∩ �. Then N is open and convex. Let Ï: �7 → �7, Ï�� + Ð� = � for � ∈ �, Ð ∈ ,.  If ¨ = � + Ð, 	� ∈ �, 	Ð ∈ ,, then ©	¨ = 	� = 	©¨. Let � ∈	µ,�²³���� ∩ �.  Since � ∈ 	µ,�²³����, then there exists an 

admissible control  and � ≥ �� such that � = / �SE�, U�B�G��B�∆BAAX . On the other hand, since 

� ∈ �, � = ©� , then:  

� = ©� = a ©�SE�, U�B�G��B�∆	= a �SE�, U�B�G��B�∆BA
AX

A
AX

 

where ��B� = ©��B� ∈ � ∩ ©���� for all B ∈ �. Since the 
restriction of 	 to � has all eigenvalues with a negative real part, 

then there are positive constants |, ~ > 0 such that (see 

Pötzsche et al., (2003)): |�¡��, ���| ∙ �|�|� = ||�S��, ����|| ≤

~�H��AHAX�||�|| for � ≥ �� and � ∈ �. Since ©���� 
is bounded, there is a constant � such that if � is also in ©����, 
then: 

|�¡��, ���| ⋅ �|�|� = �|�S��, ����|� ≤ ��H��AHAX��|�|�, � ≥ �� 

So, (see Sontag (1998)): 

�|�|� ≤ � a ��H��AHAX��B ≤A
AX

�| �1 − �H�A� ≤ �| 

Hence Ì is bounded. 
Theorem 4. Let B2� = ∞ and �YZ  be bounded 

a neighborhood of zero. Then 	µ,�²³(��� = �7 if and only if:  

− system (5) is controllable; 

− matrix 	 has no eigenvalues with a negative real part. 
Proof: If 	µ,�²³(��� = �7

 
then (i) is obvious (see Bartosiewicz 

and Pawłuszewicz (2006)). If (ii) doesn’t hold then , should be 

a proper subspace of �7
 and ~ ≠ 0.We may assume that �YZ  

is convex and bounded. Lemma 3 implies that �7 = 	µ,�²³ (��� 
is a subset of  , + Ì and Ì  is bounded, hence the contradiction.  

If (i) and (ii) hold, then by Lemma 2, �7 = , ⊆ 	µ,�²³(���.  
Theorem 4 and Kalman controllability rank condition imply the 
following. 

Collorary 2. Let B2� = ∞ and �YZ  be a bounded 

neighborhood of zero. Then 	µ,�²³(��� = �7  if and only if  C#4¿�B, AB,…AgHIB] = n.  
5. CONCLUSIONS 

The paper extends the conditions for constrained relative con-
trollability for linear time-varying and time-invariant  systems to 
the systems defined on different time models, also on nonhomog-
enous time domains. A calculus on time scales is used to achieve 
this goal. The  existing necessary and sufficient conditions for null 
controllability of time varying systems were unify. The Kalman 
rank condition for time-invariant  systems with control constrains 
was extended on systems defined to any unbounded from above 
time scale.  
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APPENDIX 

A1. BASICS ON TIME SCALES CALCULUS 

Let us recall that a time scale � is an arbitrary nonempty 
closed subset of the set � of real numbers. The standard cases 

comprise � = �, � = 6 and � = ℎ6 for ℎ > 0. We assume 

that � is a topological space with the topology induced from �. 
For � ∈ � we define the forward jump operator U: � → � 

by U��� ≔ infoB ∊ �: B > �p, the backward jump operator Ó: � → �  by Ó��� ≔ sup	oB ∊ �: B < �p,  the graininess func-

tion F: � → �0,∞� by F��� ≔ U��� − �. Using these operators 
we can classify the points of the time scale as follows: 

− If U��� > �, then t is called right-scattered and if Ó��� < �, 
then t is called left-scattered;  

− if � < B2�
 
and U��� = �, then � is called right-dense and if � > y4*�  and Ó��� = �, then � is left-dense. 

Function *: � → � is called rd-continuous provided it is con-

tinuous at right-dense points in � and its left-sided limits exist 
(finite) at left-dense points in T. Function * is called regulated 
provided its right-sided limits exist (finite) at all right-dense points 

of � and its left-sided limits exist (finite) at all left-dense points 
in �. Function * is piecewise rd-continuous,  if it is regulated and 
if it is rd-continuous at all, except possibly at finitely many, right-

dense points � ∈ �.  

Let �� ≔ � − E�B2��, B2�Ô if B2� < ∞
 
and �� ≔ ∞ 

if B2� = ∞. 

Definition A1.  Let *: � → � and � ∈ ��. The delta derivative of * at �, denoted by *∆���, is the real number (provided it exists) 
with the property that given any Õ > 0,  there is a neighborhood h of � such that: 

|Ö*EU���G − *�B�Ô − *∆���(	U��� − B�| ≤ 	Õ|U��� − B| 
for all B ∈ h.  

We say that * is delta differentiable on ��	provided *∆��� ex-

ists for all � ∈ ��. In general, the function U may not be delta 
differentiable. Delta derivatives of higher order are defined in the 

standard way: *�·]��� = *∆�*∆×Ø����� for ¿ ≥ 1. 
Remark A2. [Bohner and Peterson (2001)]  If � = �, then *: � → � is delta differentiable at � ∈ �  if and only if * is differ-
entiable in the classical sense at �. If � = 6, then *: 6 → � 

is always delta differentiable at every � ∈ 6  with *∆��� = *�� +1� − *���.  
Let *: � → � be a bounded function on �#, $]' and let © be 

a partition of �#, $]' such that # = �� < �I < ⋯ < �7 = $. 

In each interval ��ÚHI, �Ú�', y = 1,… , 4, choose an arbitrary £Ú 
and form the sum: 

s = È*�£Ú��
7

ÚÅI
�Ú − �ÚHI� 

We say that * is Riemann ∆-integrable (or ∆-integrable) from # to $ if there exists a number 9 with the following property: 

for each Õ > 0 there exists Ã > 0 such that:  

|s − 9| < 	Õ 

for every s corresponding to any partition © of  �#, $]' and 

independent of the choice of £Ú ∈ ��ÚHI, �Ú�' £Ú, y = 1,… , 4. 
Such a number 9 is unique, see Bohner and Peterson (2003). 
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       A function �: � → �  is called a ∆-antiderivative of *: � → � 

provided � is ∆-differentiable on �� and �∆��� = *��� for all � ∈ ��. F is called a ∆-prederivative of * provided � is ∆ -

predifferentiable with region of differentiation  Û and �∆��� =*���  for all � ∈ Û.  

Theorem A3. [Bohner and Peterson (2003)]   Let * be a ∆-

integrable function on�#, $]'. If * has a ∆-prederivative �: �#, $]' → � with region of differentiation Û, then: 

a *���∆� ≔ ���� − ��B�A
�  

A.2. ELEMENTS OF ∆-MEASURES ON TIME SCALES 

The notions of ∆-measurable set and ∆-measurable function 
are studied in Cabada and Vivero (2006), Deniz (2007). Let us 
consider a set F = o�#, $�': #, $ ∈ �, # ≤ $p The interval �#, #�' is understood as the empty set. Let ÝI: � → �0,∞� be 

a set of functions that assigns to each interval �#, $�' ∊ � its 

length: ÝI��#, $�'� = $ − #.  Using the pair ��,ÝI� one can 

generate an outer measure mI∗  on the family of all subsets of � 
as follows. Let . ⊆ �. If there exists at least one finite or counta-

ble system of intervals hß ∈ �, à ∈ Ì,	such that . ⊂ ⋃ hßß , then 

we put ÝI∗�.� = y4* ∑ ÝIEhßG,ß  where the infinum is taken 

over all coverings of . by a finite or countable system of intervals  hß ⊆ �. If there is no such covering of  E, then we put ÝI∗�.� =∞.  A subset A of a time scale �  is ∆-measurable if ÝI∗�.� =

ÝI∗�. ∩ 	� +ÝI∗�. ∩ �� − 	�� holds true for any . ⊂ �. 
Defining a family:  

��ÝI∗� = oΛ ⊂ �: Λ	yB	∆-measurable} 

the Lebesgue ∆-measure, denoted by F∆, is the restriction of ÝI∗ to ��ÝI∗�. If set . is Lebesgue measurable, then set . ∩�	is ∆-measurable, see Deniz (2007).  
A function *: � → �−∞,∞]	is ∆-measurable if for every  real 

α the set *HIE�−∞, |�G = o� ∈ �: *��� < |p is ∆-

measurable. If *	is rd-continuous, then f is ∆-measurable, see 
Deniz (2007). 

Properties of rd-continuous and continuous functions 

on a time scales implies that if * is a continuous function defined 

on �, then it is ∆-measurable. Moreover, if an rd-continuous func-
tion * is defined on a ∆-measurable set . ⊆ �, then *	 
is a ∆ -measurable function. 

Proposition A4 [Deniz (2007)] Let * be defined on  
a ∆-measurable subset . of �. Function * is ∆ -measurable if the 

set of all right-dense points of ., where * is discontinuous,  
is a set of ∆-measure zero. 
Proposition A5 [Pawłuszewicz and Torres (2010)]  Assume that *: � → �−∞,∞]. Then * is ∆-measurable if and only if, given Õ > 0, there is a rd-continuous function â: �#, $]� → �	such 

that the ∆-Lebesgue measure of the set o�: *��� ≠ â���p 
is strictly less than Õ. 
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