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Abstract: A new approach for frequency analysis of recorded signals and readout the frequency of harmonics is presented in the paper. 
The main purpose has been achieved by the cross-correlation function and Hilbert transform. Using the method presented in the paper, 
there is another possibility to observe and finally to identify single harmonic apart from commonly used Fourier transform. Identification 
of the harmonic is based on the effect of a straight line of the envelope of the cross-correlation function when reference and signal harmon-
ic have the same frequency. This particular case is the basis for pointing the value of the frequency of harmonic component detected. 
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1. INTRODUCTION 

It is common knowledge that spectrum analysis using fast 
Fourier transform (FFT) presents the amplitudes of all harmonics 
the fast way. This method of showing the frequency profile of the 
signal is applied both during the post-processing and as real-time 
processing. 

There is many engineering applications of correlation function 
(Bendat and Piersol, 1980). To provide for a new application, 
the cross-correlation function has been utilized to correlate real-
measured signal and a single harmonic signal generated 
by a software. Also, the Hilbert transform has been used for ob-
taining the envelope of the cross-correlation function (Thrane, 
1984) where the envelope removes the oscillations (Thrane et al., 
1999). In particular cases, experimental results have shown 
a linear shape of the envelope. It is observed when correlated 
signals have a common frequency value (Kotowski, 2010). This 
effect is well noted and very sensitive to generated single harmon-
ic signal frequency. Thus, the paper presents the method of read-
ing the particular frequency harmonic developed on the base 
of cross-correlation function and its envelope. 

It is obviously known that after signal recording there is no 
way to have the longer one. This case couses the fixed frequency 
resolution as inverse of period of signal duration when using FFT. 
This case is especially noted for very short-time signals, e.g., from 
impulse tests. For avoiding that limitation, Cawley and Adams 
(1979) investigated the problem mentioned aboved and showed 
to be possible to obtain frequency resolution of one-tenth of the 
spacing between the frequency points produced by the Fourier 
transform. Also, it is commonly used zero-padding for improving 
frequency estimation (Quinn, 2009; Dunne, 2002). Zero-padding 
means that an array of zeros is appended to the end (or begin-
ning) of analysed signal. Using the method presented in the paper 
there also is possible to obtain different frequency resolution than 
that fixed using FFT. Frequency resolution can be variable adjust-
ed by user of the method starting from reference value of 1 Hz 
to up or down. 

2. METHODOLOGY 

The cross-correlation function Rxy(τ) between two processes, 
x(t) and y(t), is calculating by the expression (Bendat, Piersol, 
1980): 

( ) ( ) ( )dttytx
T

R

T

T
xy  

1
lim

0

∫ +=
∞→

ττ            (1) 

where: T – signal record length, τ – argument of cross-correlation 
function (time delay). 

Then, the cross-correlation function Rxy(τ) is transformed into 
the envelope by Hilbert transform. The Hilbert transform of a real 
time signal, x(t), is defined as follows (Thrane, 1984) 
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Thus, the Hilbert transform of the cross-correlation Rxy(τ) 
is given by: 
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The Hilbert transform enables calculation of the envelope 
of the signal x(t) as follows (Thrane et al., 1999): 
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 is the envelope. Similarly, we can calculate 

the envelope of the function Rxy(τ) as: 
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The method also needs series of harmonic signals generated 
as follows: 

))(2sin( tiwfy si ⋅⋅+⋅= π   (6) 

where: i - an integer value (index), fs – starting frequency,  
w – factor as frequency resolution parameter. 

Frequency fs is fixed as a start point value and is increasing 
by i = 1, 2, 3, … , n. Also, the factor w is applied for changing 
the resolution of the harmonic frequency reading. This way, a form 
of the envelope points the case of detection and finally identifica-
tion of harmonic. The harmonic frequency value equals one of the 
harmonics existing within the signal yi(t). Preliminary studies have 
shown that envelope of the cross-correlation function is in the 
form of a straight line when input signal x(t) and the signal y(t) 
have in common one frequency determined as (fs+w�i). This phe-
nomenon is easy to detect and determination of the common 
frequency is fast. For that reason, plot of the envelope can be 
effectively used to identify harmonics included in recorded signals 
without Fourier transform. 

There are a hundred of plots of the cross-correlation function 
envelope to illustrate four particular cases of the straight line effect 
mentioned above in Fig. 1. It has been used the four-harmonic 
signal x(t) generated as follows 
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where: f1=64 Hz,  f2=85 Hz, f3=130 Hz, f4=150 Hz. The signal yi 
is calculated in the way determined in Eq. 6, where fs and w 
are constant and equal 60.0 and 1.0 respectively. The index i 
varies in the range from 1 to 100. 

The value of frequency of harmonic included in the input sig-
nal x(t) is determined on the base of the plot of the envelope. 
When observing straight-line effect, we know the fs value,  
w value and the i index value of the signal yi(t) which was used for 
calculations (Eq. 6). This way, a formula (fs +w�i) indicates the 
frequency of recognized harmonic. 

 

Fig. 1. The cross-correlation envelopes 

3. RESULTS FOR STATIONARY SIGNAL 

The exemplary experimental results have been based  
on signal of vibration presented in Fig. 2. The signal has been 
recorded by sampling frequency of 4096 Hz and over time of one 
second. The spectrum shown in Fig. 3 has a lot of well-observed 
harmonics. As shown in Fig. 4, two cases have been detected 
between 210 Hz and 310 Hz where envelopes of the cross-
correlation function are almost in the form of a straight line. Thise 
situation has occurred for i=17 and i=92 by fs=210Hz and w=1 
(Eq. 6). Hence, it has been for 227 and 302 Hz with frequency 
resolution fixed by w as 1Hz (w=1). 

Apart from detection based on cross-correlation envelope 
image, an indicator Le has been used to express in numbers 
deviation of cross-correlation envelope from linearity. This way, 
it was possible to present a plot of changes in straight line overlay 

for all frequency span of recorded vibration signal. Le is described 
as follows 
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where: yref – reference straight line, yenv – cross-correlation  
envelope, N – number of points for calculation. 

This way, a plot of changes of indicator Le has been prepared 
and presented in Fig. 5. It seems to be no difference between 
spectrun presented in Fig. 3 and the plot of Le but if zooming the 
plot there are local minimas in places of dominant frequency 
appearance (spectrum peaks). If having the plots of Le,  
it is possible to readout frequencies being under consideration 
(Figs. 6-9). 
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Fig. 2. Signal of vibration 

 

Fig. 3. Signal spectrum 

 
Fig. 4. Envelopes of the cross-correlation functions
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Fig. 5. Le indicator plot for all frequency span of recorded vibration signal

 
Fig. 6. Enlargement of Le indicator plot around 227 Hz 

 
Fig. 7. Enlargement of Le indicator plot around 302 Hz 

 
Fig. 8. Enlargement of Le indicator plot around 378 Hz 

 

Fig. 9. Enlargement of Le indicator plot around 1511 Hz 

4. RESULTS FOR NONSTATIONARY SIGNAL 

Frequency identification presented in section 3 can be applied 
for nonstationary signals where commonly used Fourier transform 
relies on a stationarity assumption and it is difficult to guarantee, 
in practice, the stationarity over a long signal time horizon (Benko 
and Juričić, 2008). A typical nonstationary signal can be the signal 
of response from impulse test. Exemplary impulse response under 
consideration is shown in Fig. 10. Laboratory software tool using 
curvefitting procedure have been utilized to obtain values of two 
frequencies at two highest amplitudes. It have resulted the 
frequency of 3794 and 13714 Hz. 

In this case, impulse response analysis have shown that 
frequency readout is based on some different form of Le indicator 
plot than obtained for vibration signal in section 3. It is well-
observed an push-up effect presented in Figs. 11-12. This effect 
revealed the frequency of harmonics really existing in impulse 
response, i.e., 3794 and 13714 Hz. 

Results presented previously have been obtained by the 
frequency resolution of 1 Hz. By changing the w parameter, 
it is possible to get greater resolution e.g. 0.2 Hz (w=0.2). As show 
in Fig. 13, the plot of Le indicator has the same character but 
readout of frequency is more exact. In this case it is 3794.2 Hz – 
frequency at maximum of push-up effect. 
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Fig. 10. Impulse response 

 
Fig. 11. Le indicator plot for impulse response around 3794 Hz 

 
Fig. 12. Le indicator plot for impulse response around 13714 Hz 

 
Fig. 13. Le indicator plot for impulse response around 3794 Hz  
              by the frequency resolution of 0.2 Hz 

It is also able to obtain quasi-stationary signal from 
nonstationary by deviding the nonstationary signal into several 
sections and then use FFT. But this way, the Fourier spectrum 
resolution is going down. By deviding the signal presented in Fig. 
10 into two parts, the spectrum resolution equals 164Hz (duration 
is 6.10 milisecond). After splitting into four sections, the spectrum 
resolution equals 328Hz (duration is 3.05 milisecond). However 
using the indicator Le the method have its own spectrum 
resolution independent of duration of analysed signal or a 
fragment of analysed signal. 

5. CONCLUSIONS 

A general view of the use of cross-correlation function and its 
envelope for frequency analysis has been presented in the paper. 
That approach brings in the method for reading the frequency 
both for stationary and for nonstationary signals. For stationary 
signals, new possibility is based on the cross-correlation envelope 
straight-line effect observed for two signals (input signal and 
reference signal) when having one harmonic in common. The 
approach proposed in the paper shows a possibility to detect and 
finally to identify frequencies being within the input signal without 
use of Fourier transform, thus, without limitation in frequency 
resolution. The frequency resolution of proposed frequency 
analysis is determined over the factor used for generating 
reference signal. The method proposed in the paper gives a 
possibility to have the spectrum resolution controlled and 
independent of period of signal recording, e.g. signals lasting 
much less than one second always have Fourier spectrum 
resolution much over than 1 Hz and using the proposed methos it 
is able to obtain spectrum resolution 1Hz or even below 1Hz. 

The cross-correlation function and its envelope can be a 
complementary method for frequency analysis, e.g. for accurate 
detection of natural frequencies using impulse tests. 
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