PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rotor Crack Detection Approach Using Controlled Shaft Deflection

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rotating shafts are important and responsible components of many machines, such as power generation plants, aircraft engines, machine tool spindles, etc. A transverse shaft crack can occur due to cyclic loading, creep, stress corrosion, and other mechanisms to which rotating machines are subjected. If not detected early, the developing shaft crack can lead to a serious machine damage resulting in a catastrophic accident. The article presents a new method for shaft crack detection. The method utilizes the coupling mechanism between the bending and torsional vibrations of the cracked, non/rotating shaft. By applying an external lateral force of a constant amplitude, a small shaft deflection is induced. Simultaneously, a harmonic torque is applied to the shaft inducing its torsional vibrations. By changing the angular position of the lateral force application, the position of the deflection also changes opening or closing of the crack. This chang/ es the way the bending and torsional vibrations are being coupled. By studying the coupled lateral vibration response for each angular position of the lateral force one can assess the possible presence of the crack. The approach is demonstrated with a numerical finite element model of a rotor. The results of the numerical analysis demonstrate the potential of the suggested approach for effective shaft crack detection.
Rocznik
Strony
32--40
Opis fizyczny
Bibliogr. 24 poz., Rys.
Twórcy
  • Department of Automatic Control and Robotics, Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15/351 Białystok, Poland, z.kulesza@pb.edu.pl
Bibliografia
  • 1. Bachschmid N., Pennacchi P., Tanzi E. (2010), Cracked rotors: a survey on static and dynamic behaviour including modelling and diagnosing, Springer-Verlag Berlin Heidelberg.
  • 2. Bachschmid N., Pennacchi P., Tanzi E., Vania A. (2000), Identification of transverse crack position and depth in rotor systems, Meccanica, 35, 563-582.
  • 3. Bently D. E., Muszynska A. (1986), Detection of rotor cracks, Proceedings of Texas A&M University 15th Turbomachinery Symposium and Short Courses, Corpus Christi, TX, 129-139.
  • 4. Darpe A. K., Gupta K., Chawla A. (2004), Coupled bending, longitudinal and torsional vibrations of a cracked rotor, Journal of Sound and Vibration, 269, 33-60.
  • 5. Dimarogonas A.D., Paipetis S.A. (1983), Analytical Methods in Rotor Dynamics, Applied Science Publishers, London.
  • 6. Gasch R. (1993), A survey of the dynamic behavior of a simple rotating shaft with a transverse crack, Journal of Sound and Vibration, 160 (2), 313-332.
  • 7. Gawroński W., Kruszewski J., Ostachowicz W., Tarnowski J., Wittbrodt E. (1984), Finite element method in dynamics of structures, Arkady, Warsaw (in Polish).
  • 8. Grabowski B. (1982), Shaft vibrations in turbomachinery excited by cracks, In proceedings of the 2nd Workshop on Rotordynamic Instability Problems in High-performance Turbomachinery, Texas A&M University, NASA Conference Publication, 2250, 81-97.
  • 9. Guo D., Peng Z. K. (2007), Vibration analysis of a cracked rotor using Hilbert-Huang transform, Mechanical Systems and Signal Processing, 21, 3030-3041.
  • 10. He Y., Guo, D., Chu, F. (2001), Using genetic algorithms to detect and configure shaft crack for rotor-bearing system, Computer Methods in Applied Mechanics and Engineering, 190, 5895-5906.
  • 11. Isermann R. (2005), Model-based fault detection and diagnosis – status and applications, Annual Reviews in Control, 29, 71-85.
  • 12. Ishida Y., Inoue T. (2006), Detection of a rotor crack using a harmonic excitation and nonlinear vibration analysis, ASME Journal of Vibration and Acoustics, 128, 741-749.
  • 13. Kiciński J. (2005), Dynamics of rotors and slide bearings, Fluid Flow Machinery Series, Vol. 28, IMP PAN, Gdansk (in Polish).
  • 14. Kulesza Z., Sawicki J. T. (2010), Auxiliary state variables for rotor crack detection, Journal of Vibration and Control, 17 (6), 857-872.
  • 15. Litak G., Sawicki J. T. (2009), Intermittent behaviour of a cracked rotor in the resonance region, Chaos, Solitions and Fractals, 42, 1495-1501.
  • 16. Mani G., Quinn D. D., Kasarda M. (2005), Active health monitoring in a rotating cracked shaft using active magnetic bearings as force actuators, Journal of Sound and Vibration, 294, 454-465.
  • 17. Mayes, I. W. and Davies, W. G. R. (1984), Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor, Journal of Vibration, Acoustics, Stress and Reliability in Design, 83, DET 84, 139-145.
  • 18. Nelson H. D., McVaugh J. M. (1976), The dynamics of rotor bearing systems using finite elements, ASME Journal of Engineering for Industry, 98, 593-600.
  • 19. Newmark N. M. (1959), A method of computation for structural dynamics, ASCE Journal of Engineering Mechanics Division, 85, 67-94.
  • 20. Przemieniecki J. S. (1968), Theory of matrix structural analysis, Mc Graw-Hill, New York.
  • 21. Sawicki J. T., Friswell M. I., Kulesza Z., Wroblewski A., Lekki J. D. (2011), Detecting cracked rotors using auxiliary harmonic excitation, Journal of Sound and Vibration, 330, 1365-1381.
  • 22. Sawicki J. T., Lekki J. D. (2008), Smart structural health monitoring of rotating components using active magnetic force actuators, Proceedings of NASA Aviation Safety Technical Conference, Denver, Colorado, 1-23.
  • 23. Sinou J-J., Lees A.W. (2005), The influence of cracks in rotating shafts, Journal of Sound and Vibration, 285, 1015-1037.
  • 24. Tada H., Paris P. C., Irwin G. R. (1973), The stress analysis of cracks handbook, Del Research Corporation, Hellertown, PA.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0073-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.