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Abstract: A method based on elementary column and row operations of the factorization of nonnegative matrices is proposed. It is shown
that the nonnegative matrix A € RT*™ (n = m) has positive full column rank if and only if it can be transformed to a matrix with cyclic
structure. A procedure for computation of nonnegative matrices B € R*", C € R*™ (r < rank (n, m)) satisfying A = BC is pro-

posed.
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1. INTRODUCTION

The factorization problem can be stated as: given nonnegative
matrix A € RP*™, find two nonnegative matrices B € R}*T
and C € RX™ such that A = BC. The problem has been con-
sidered in many papers (de Almeida, 2011; Cichocki and Zdunek,
2006; Cohen and Rothblum, 1993; Donoho and Stodden, 2004;
Lin, 2007; Lee and Seung, 2001) and it arises in many problems
for example signal processing, quantum mechanics, combination-
al optimization etc. (de Almeida, 2011; Cohen and Rothblum,
1993). The factorization problem is closely related to the positive
rank of nonnegative matrices (Cohen and Rothblum, 1993).
The positive rank of nonnegative matrices plays important role
in control system theory specially in the reachability problem
of positive linear systems (Kaczorek, 2001).

In this paper a method based on elementary column and row
operations of the factorization of nonnegative matrices will be
proposed.

The paper is organized as follows. In section 2 the factoriza-
tion problem is formulated and some basic definitions are recalled.
The main result of the paper is presented in section 3, which
is divided in three subsections. In the subsection 3.1 the elemen-
tary column and row operations and the elementary operation
matrices are defined and their properties are formulated. Matrices
with cyclic structures are introduced in subsection 3.2 and it is
shown that the nonnegative matrix has positive full column rank
if and only if it can be transformed to a matrix with cyclic structure.
The proposed method of the factorization of nonnegative matrices
is presented in subsection 3.3. The concluding remarks are given
in section 4.The following notation will be used: R - the set of real
numbers, R™*™ — the set of n X m real matrices, RM*™ - the
set of n X m matrices with nonnegative entries and R% = RP*1,
I, — the n X n identity matrix.

2. PRELIMINARIES AND PROBLEM FORMULATION

Definition 2.1. (Cohen and Rothblum, 1993) The smallest non-
negative integer r is called the positive rank of the matrix
A € RP*™ and denoted by rank,A if there exist b, € RY,

k=1,..,r(r <m)such that each column a; € R}, i=
1, ..., m of A s the linear combination:

,

a; =Y cpiby fori=1...m 2.1)
k=1

with nonnegative coefficients ¢;; = 0,k =1,...,r;i=1,..,m

of the vectors by.

From (2.1) it follows that if rank, A = r then the matrix
A € RT*™ can be written in the form:

A=BC (2.2a)
where:

a
B=[h .. b,]e*)%f_x’, C=

c

c mrxm ,
* (2.2b)

r

Cr = [Ck,l Ck,m]7 k= 1,...,1”.

Definition 2.2. The representation of the matrix A € RTP*™
in the form (2.2) is called factorization of the matrix 4.

The standard rank A of A € RP*™ and the positive
rank, A are related by (Cohen and Rothblum, 1993):

rank A <rank, 4 < min(n,m) (2.3)

For example the matrix:

00

(24)

(=S
S = O =

2
0
3

W = O

has the standard rank equal to 3 and the positive rank equal to 4.
The problem under considerations can be stated as follows.

Given a nonnegative matrix A € RT*™, find its factorization
(2.2) i.e. the matrices B € RP*™ and C € R*™ such that (2.2)
holds.

In this paper the factorization problem will be solved by the
use of the elementary column and row operations.
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3. PROBLEM SOLUTION
3.1. Elementary operations

To solve the factorization problem the following elementary
column and row operations will be used:

— Multiplication of the ith column (row) by positive number c.
This operation will be denoted by R[i x ¢] (L[i % c].

— Addition to the ith column (row) of the jth column (row)
multiplied by negative number —c (¢ > 0). This operation
will be denoted by R[i + j x (—c)] (L[i +j X (—¢)].

— Interchange of the ith and jth columns (rows). This operation
will be denoted by R[i, j1 (L[i, j]).

Let R, [i,c], Rq[i,j,—c] and R;[i,j] be the elementary
column operations matrices obtained by applying the elementary
column operations R[i X c], R[i + j X (—c)] and R[i, j] to the
identity matrices respectively. Similarly, are defined the elemen-
tary row operations matrices L., [i, c], Lq[i,j, —c] and L;[i, j].
The elementary column operations are performed by post-
multiplication of the matrix by the elementary column operations
matrices and the elementary row operations are performed
by premultiplication of the matrix by the elementary row opera-
tions (Kaczorek, 1993).

It is easy to prove the following lemmas.

Lemma 3.1. The inverse matrices R;;[i,c], Rz[i,j,—c],

R i,j1 of Ry[i,cl, Rqli,j,—c], R;[i,j] and the inverse

matrices  Lyi[i,c], Lg[i,j,—c], L7i,j] of Ly[i,c],

Lali, j, —c], Li[i,]] satisfies the equalities:

R,'[i.c]=R,, [lﬂ R Tij—c1=Ry[i. ), B i, j1= Ry i j]
(3.1a)

Lyli.cl=L, [Jﬂ LG T jmel =Lyl el L i, j1= Lili, /]
(3.1b)

Lemma 3.2. The elementary column operations R[i X c],
R[i+jx(—=c)], R[i,j] and elementary row operations
L[i x c], L[i +j x (—c)], L[i,j] do not change the positive
rank A of the matrix A € RP*™,

Remark 3.1. It is assumed that after performance of any of the
elementary column and row operations on a nonnegative matrix
A € RP*™ the obtained matrix is also nonnegative.

For example performing on the matrix (2.4) the following elemen-

tary operations L[2 x 1/2], L[4 x 1/3], we obtain:
1 1 0 0] (1 0 0 1]
1 010

_ kg 10T apy
01 01 0101
00 11 0110
- Z - Z (3.2)
1 001 1 001
1 0 1 0 a3 |1 100
0110 01 10
0 1 0 1] 0 0 1 1]

The matrices (2.4) and (3.2) have the same positive rank
equal to 4.
Let e; be the ith column of the n x n identity matrix. The col-
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umn ae; for a > 0 is called the monomial column (Kaczorek,
2001). The nonnegative matrix consisting of m(m < n) linearly
independent monomial columns has full column positive rank.
The positive rank and standard rank of this matrix are the same
as the matrix (2.4).

3.2. Matrices with cyclic structure

Definition 3.1. A nonnegative matrix:

is called the matrix with cyclic structure if:

a

i 2> ai+1’l~ 2.2 an’i > al’i >..2 al’*l,i i= 1,...,” . (34)

For example the matrix (3.2) has cyclic structure.
Theorem 3.1. [9] The system of linear algebraic equations:
aj1X)] +a2Xy +.t @ X, =1, a; 20, i, j=1..,n (35)
has a nonnegative solution x; = 0,i = 1, ...,n if and only if its
coefficient matrix has the cyclic structure.
Theorem 3.2. The nonnegative matrix A € RP*™, n>m
has positive full column rank:

rank, A=m (3.6)

if and only if it can be transformed to a matrix A with cyclic struc-
ture, i.e. (3.4) holds for,i = 1, ..., m.
Proof. Consider the matrix equation:

[ all al’m 0 O__xl ] _1_

Ap1 - Aum 0 o Ofx, _ 1 (37)
aerLl aerLm 1 .. 0 1 1
L an,l an’m 0 .. 1__ 1 | _1_

By Theorem 3.1 the matrix equation has the nonnegative solu-
tion x = [x; ... xpp 1...1]7 € K% if and only if the matrix A has
cyclic structure.

From Theorem 3.2 and Lemma 3.2 we have the following im-

portant corollary.
Corollary 3.1. The nonnegative matrix A € R™*™ has positive full
column rank rank, A = m if and only if it has cyclic structure
or can be transformed to this cyclic structure by the elementary
column and row operations.

For example the matrix (2.4) has not the cyclic structure but it
has been transformed to the matrix (3.2) with cyclic structure
by the use of the elementary row and column operations.

3.3. The proposed method

First the proposed method of the factorization of nonnegative
matrices will be demonstrated on the following examples.
Examples 3.1. For the nonnegative matrix:



(3.8)

b

Il
(=
— s~ B
N W N

find nonnegative matrices B and C satisfying the condition (2.2a).
Using the elementary column operations to (3.8) we obtain;

[2 4 2] 20 2| Rp3+ix(-1)]
| 4 5| _R2+x(2)] 5 5| __RB+2x(-2)]
01 2 01 2
- - (3.9a)
2 00
1 2 0|=4
01 0
and:
A=AR (3.9b)
where:
R=R,[21,-2]R,[3,1,-1]R,[3,2,-2]
1 -2 01 0 =1§y1 O O 1 -2 3
(3.10)
=0 1 001 OO0 1 -2|=/0 1 =21
0O 0 1J0 0 10 0 1 0 0 1
From (3.9) and (3.10) we have:
2 0 ot —2 37!
A=AR'=[1 2 oo 1 -2
01 040 O 1
(3.11)
2 0 01 2 1
=1 2 00 1 2|=BC
01 00 0 1
where:
20 1 2 1
B=[1 2| c= . (3.12)
0 01 2

Using (3.1) and (3.10) we may compute the inverse matrix
R™1 as follows:

-1
RV =R,[3.2.21R,[3.L11R,[2.1,2]

1 0 01 0 1|1 2 O 1 21 (3.13)
=01 20 1 00 1 Of=(0 1 2|
00 10 0 1|0 0 1 0 0 1

The same result we obtain using the elementary row opera-
tions to (3.8):

2 4 2] ppesx-2) |0 00

1 4 5| L2XCED] 5 |24 (3.14a)
01 2 0 1 2

and

Py (3.14b)

acta mechanica et automatica, vol.6 no.4 (2012)

where:
L=L,[1,2,-2]L,[2,3,-2]
1 -2 0|1 0 O 1 -2 4
(3.15)
=0 1 OO0 1 -2|=/0 1 =2}
0O 0 10 0 1 0 0 1
From (3.14) and (3.15) we have:
1 -2 470 0 o
A=L"4=10 1 =-2| |1 2 1
0 0 1 01 2
(3.16)
1 2 00 0 O
=0 1 2|1 2 1|=BC
0 0 110 1 2

where the matrices B, C are given by (3.12).
Using (3.1) and (3.15) we may compute the inverse matrix
L™ as follows:

o2 3 2L 2 2]
1 0 oft 2 0] [1
=0 1 2(0 1 0|=
00 1[0 0 1

20 (3.17)
01 2|
0 0 1

In general cases let us consider the nonnegative matrix
A € RP*™ with n = m. If rank, A = m then the matrix has
trivial factorization (2.2) with B positive full column rank, i.e.

rank,B = m and any nonnegative elementary column opera-
tions matrix C.

0 4 2
From example for the matrix 4={1 0 3| we have:
0 01
0 20 1 0 3
B=|1 0 0, C=|0 2 1 (3.18)
0 01 0 01
Let:
rank , 4 =7 < min(n,m) . (3.19)

If n > m the following elementary column operations proce-
dure is recommended.
Procedure 3.1.
Step 1. Using a suitable sequence of elementary column opera-
tions reduce the matrix A € RT*™ to the form:

A=AR=[B 0]e R™™ BeR"™" (3.20)
where:

R=RR,. R, (3.21)
And R,k =1, ..., q are the elementary column opera-

tion matrices defined in 3.1.

Step 2. Performing the elementary column operations on the
identity matrix I, and using (3.1) compute the inverse
matrix:
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(3.22)

R,
R =RRYR = |
Ry

El c m:xm’ §2 c mgrm—r)xm

Step3. Using (3.20) and (3.22) find the desired matrices
B € R and C = R, € R*™ satisfying (2.2).
Justification of Procedure 3.1 follows from (3.20) and (3.22)
since:

Ry

_Tal
A=AR"=[B 0]{1{2

} = BR, = BC . (3.23)

Remark 3.2. If n > m and rank, A = m then the elementary
row operations procedure is recommended or we may apply
Procedure 3.1 to the transpose matrix AT and use the equality
AT = (BO)T = CTB".

Example 3.2. Find the factorization (2.2) of the nonnegative ma-
trix:

0
0.5 e R4, (3.24)

3 2
A=10 2
6 8 1

1

1

4
In this case we apply the elementary row operations approach

since m = 4 > n = 3. Using Procedure 3.1 we obtain the fol-

lowing.

Step 1. Using the following row operations we obtain:

IB3+ix(-2)] |3 2 1 c
B2 o 5 1 o :z:[ }
0

0 . (3.25)
321 0

C:
[0 21 0.5}

Step 2. Performing the elementary row operations L[3 + 2 X 2]
L[3 + 1 x 2] on the identity matrix I; we obtain:

1 0 O grp3+2x27 |1 0 O
0 1 o8B Jo 1 o|l=r'=[B B,
00 1 2 21
. (3.26)
10 0
B=|0 1|, B=|0
2 2 1

Step 3. The desired matrices B and C satisfying A = BC have

the forms:
Lo 321 0
B=|0 1| C= . (3.27)
) 0 21 05

4. CONCLUDING REMARKS

The factorization problem of nonnegative real matrices has
been addressed. A method based on elementary column and row
operations of the factorization of nonnegative matrices has been
proposed. It has been shown that the nonnegative matrix A €
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RIXM (n = m) has positive full column rank if and only if it can
be transformed to a matrix A with cyclic structure (Theorem 3.2).
A procedure based on the elementary operations for computation
of nonnegative matrices B € R}, CeRY™ (r<
rank(n, m)) satisfying the condition (2.2a) has been proposed
and illustrated by numerical examples.
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