PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of Dynamic Friction Factor for FEM Modeling of High Speed Process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study aims to establish through a series of friction tests the trends of the dynamic factor according to sliding speed. A ballistic set-up using an air gun launch is used to measure the friction coe?cient for the steel/carbide contact between 15 m/s and 80 m/s. Since the experimental characterization of friction is a key factor in the development of high speed process such as high speed machining, the experimental quantification is introduced into a cutting model by finite elements method. Modeling results are compared with cutting forces measured on a similar experimental device, which can reproduce perfect orthogonal cutting conditions.
Rocznik
Strony
205--205
Opis fizyczny
–-213, Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
  • Laboratoire d’Etude des Microstructures et de M´ecanique des Mat´eriaux UMR CNRS 7239- Ile du Saulcy – 57045 Metz cedex, gautier.list@univ-lorraine.fr
Bibliografia
  • 1. Childs T.H.C., Mahdi M., On the stress distribution between the chip and tool during metal turning, Annals of the CIRP, 38, 55–58, 1989.
  • 2. Usui E., Shirakashi T., Mechanics of machining – from descriptive to predictive theory, ASME Publication PED, 7, 13–35, 1982.
  • 3. Buryrta D., Sowerby R. and Yellowley I., Stress distribution on the rake face during orthogonal machining, Int. J. Mach. Tools Manufacturing, 14, 721–739, 1994.
  • 4. Brocail J., Watremez M., Dubar L., Identification of a friction model for modelling of orthogonal cutting, Int. J. Tools and Manufacture, 50, 807–814, 2010.
  • 5. Sutter G., Chip geometries during high speed machining for orthogonal cutting conditions, J. Mach. Tools Manufacturing, 45, 719–726, 2005.
  • 6. Sutter G., Philippon S., Molinari A., An experimental investigation of dry friction for a large range of sliding velocities, Mat´eriaux et Techniques HS, pp. 33–37, 2004.
  • 7. Lim S.C., Ashby M.F., Brunton J.H., The effects of sliding conditions on the dry friction of metals, Metallurgica, 37, 3, 767–772, 1989.
  • 8. Lim S.C., Ashby M.F., Wear-Mechanism maps, Acta Metallurgica, 35, 1, 1–24, 1987.
  • 9. Johnson G.R., Cook W.H., A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proc. 7th Inter. Symp. on Ballistics Proceedings, pp. 541–547, 1983.
  • 10. Sasso M., Newaz G., Amodio D., Material characterization at high strain rate by Hopkinson bar tests and finite element optimisation, Mat. Sci. Eng., A487, 289–300, 2008.
  • 11. Goto D., Becker R., Orzechowski T., Springer H., Sunwoo A., Syn C., Investigation of the fracture and fragmentation of explosively driven rings and cylinders, Int. J. Impact Eng., 35, 1547–1556, 2008.
  • 12. Johnson G.R., Cook W.H., Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fracture Mech., 1, 31–48, 1985.
  • 13. Ranc N., Pina V., Sutter G., Philippon S., Temperature measurement by visible pyrometry: orthogonal cutting application, J. Heat. Transfer. ASME, 126, 931–936, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0071-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.