PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of in-plane vibrations of 2D structural solids with singularities using an efficient wave based prediction technique

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes the wave based method for the steady-state dynamic analysis of the in-plane behaviour of 2D structural solids. This novel prediction technique relaxes the frequency limitations of the commonly used finite element method through an improved computational efficiency. This efficiency is obtained by selecting basis functions which satisfy the governing equations a priori, in accordance with the indirect Trefftz approach. Special attention is paid to problems in which singularities appear in the problem solution. For these problems, the conventional set of basis functions is extended with functions which can represent the singularity accurately. The capabilities of this novel method for mid-frequency applications, as compared to the standard finite element method, are demonstrated by means of two numerical examples.
Rocznik
Strony
135--171
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • [1] M. Abramowitz, I.A. Stegun. Handbook of Mathematical Functions. Dover Publications, New York, 1970.
  • [2] J.D. Achenbach. Wave propagation in elastic solids, 6th. North-Holland, Amsterdam, 1990.
  • [3] N.S. Bardell, R.S. Langley, J.M. Dunsdon. On the free in-plane vibration of isotropic plates. Journal of Sound and Vibration, 191: 459–467, 1996.
  • [4] K.J. Bathe, E.L. Wilson. Numerical methods in finite element analysis. Prentice-Hall Inc., New Jersey, 1976.
  • [5] B. Bergen, B. Van Genechten, D. Vandepitte,W. Desmet. An efficient Trefftz-based method for three-dimensional Helmholtz problems in unbounded domains. Computer Modeling in Engineering and Structures, 61: 155–175, 2010.
  • [6] L. Blanc, C. Blanz´e, P. Rouch. A multiscale “Trefftz” computational method for medium-frequency vibrations of assemblies of heterogeneous plates with uncertainties. Computers & Structures, 85: 595–605, 2007.
  • [7] D.B. Bogy. On the problem of edge-bonded elastic quarter-planes loaded at the boundary. International Journal of Solids and Structures, 6: 1287–1313, 1970.
  • [8] E. Deckers, D. Vandepitte, W. Desmet. Efficient treatment of stress singularities in poroelastic Wave Based models using special purpose enrichment functions. Computers & Structures, 89: 1117–1130, 2011.
  • [9] E. Deckers, N.-E. H¨orlin, D. Vandepitte, W. Desmet. A Wave Based Method for the efficient solution of the 2D poroelastic Biot equations. Computer Methods in Applied Mechanics and Engineering, 201–204: 245–262, 2012.
  • [10] J.P. Dempsey. The wedge subjected to tractions: A paradox resolved. Journal of Elasticity, 11: 1–10, 1981.
  • [11] J.P. Dempsey. Power-logarithmic stress singularities at bi-material corners and interface cracks. Journal of Adhesion Science and Technology, 9: 253–265, 1995.
  • [12] W. Desmet. A Wave based prediction technique for coupled vibro-acoustic analysis. Ph.D. Dissertation, Katholieke Universiteit Leuven, Departement Werktuigkunde, Leuven, 1998 (http://www.mech.kuleuven.be/mod/wbm/phd−dissertations).
  • [13] G. Fairweather, A. Karageorghis. The method of fundamental solutions for elliptic boundary value problems. Advances in Computational Mathematics, 9: 69–95, 1998.
  • [14] D.J. Gorman. Exact solutions for the free in-plane vibration of rectangular plates with two opposite edges simply-supported. Journal of Sound and Vibration, 294: 131–161, 2006.
  • [15] J. Jirousek, A. Wróblewski. T-elements: state-of-the-art and future trends. Archives of Computational Methods in Engineering, 3: 323–434, 1996.
  • [16] C.S. Huang, Singularities in plate vibration problems. Ph.D. dissertation, The Ohio State University, 1991.
  • [17] J.K. Knowles, T.A. Pucik. Uniqueness for plane crack problems in linear elastostatics. Journal of Elasticity, 3: 155–160, 1973.
  • [18] P. Ladev`eze. A new computational approach for structure vibrations in the medium frequency range. Compte rendu de l’acad´emie des sciences de Paris, S´erie IIb, 332: 849–946, 1996.
  • [19] A. Leissa, O.G. McGee, C.S. Huang. Vibrations of Sectorial Plates having Corner Stress Singularities. Journal of Applied Mechanics, 60: 134–140, 1993.
  • [20] A.W. Leissa. Singularity considerations in membrane, plate and shell behaviors. International Journal of Solids and Structures, 38: 3341–3353, 2001.
  • [21] R.H. MacNeal. Finite Elements: their design and performance. Marcel Dekker Inc, New York, 1994.
  • [22] B. Pluymers, W. Desmet, D. Vandepitte, P. Sas. On the use of a wave based prediction technique for steady-state structural-acoustic radiation analysis. Journal of Computer Modeling in Engineering & Sciences, 7: 173–184, 2005.
  • [23] B. Pluymers, C. Vanmaele, W. Desmet, D. Vandepitte. Application of a hybrid finite element – Trefftz approach for acoustic analysis. Computer Assisted Mechanics and Engineering Sciences, 13: 427–444, 2006.
  • [24] B. Pluymers, B. Van Hal, D. Vandepitte, W. Desmet. Trefftz-based methods for time-harmonic acoustics. Archives of Computational Methods in Engineering, 14: 343–381, 2007.
  • [25] M.J.D. Powell. A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations. In: P. Rabinowitz ed., Numerical Methods for Nonlinear Algebraic Equations, Ch.7. 1970.
  • [26] J. Robinson. An evaluation of skew sensitivity of thirty three plate bending elements in nineteen FEM systems. Finite Element News – special report (1985).
  • [27] A. Seweryn, K. Molski. Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions. Engineering Fracture Mechanics, 55: 529–556, 1996.
  • [28] G.B. Sinclair. Stress singularities in classical elasticity – I: Removal, interpretation and analysis. Applied Mechanics Reviews, 57: 251–297, 2004.
  • [29] G.B. Sinclair. Stress singularities in classical elasticity – II: Asymtotic identification. Applied Mechanics Reviews, 57: 385-439, 2004.
  • [30] G.B. Sinclair. Logarithmic stress singularities resulting from various boundary conditions in angular corners of plates in extension. ASME Journal of Applied Mechanics, 66: 556–560, 1999.
  • [31] P. Tong, T.H.H. Pian. On the convergence of the finite element method for problems with singularity. International Journal of Solids and Structures, 9: 313–321, 1972.
  • [32] E. Trefftz. Ein Gegenst¨uck zum Ritschen Verfahren. In: Proceedings of the 2nd International Congress on Applied Mechanics, 131–137. Z¨urich, Switzerland, 1926.
  • [33] B. Van Hal, W. Desmet, D. Vandepitte. Hybrid finite element - wave based method for steady-state interior structural-acoustic problems. Computers & Structures, 83: 167–180, 2005.
  • [34] C. Vanmaele, D. Vandepitte, W. Desmet. An efficient Wave Based prediction technique for plate bending vibrations. Computer Methods in Applied Mechanics and Engineering, 196: 3178–3189, 2007.
  • [35] C. Vanmaele, D. Vandepitte,W. Desmet. An efficient wave based prediction technique for dynamic plate bending problems with corner stress singularities. Computer Methods in Applied Mechanics and Engineering, 198: 2227– 2245, 2009.
  • [36] C. Vanmaele. Development of a wave based prediction technique for the efficient analysis of low- and midfrequency structural vibrations. Ph.D. dissertation, Katholieke Universiteit Leuven, Departement Werktuigkunde, Leuven, 2007 (http://www.mech.kuleuven.be/mod/wbm/phd−dissertations).
  • [37] B. Van Genechten, D. Vandepitte, W. Desmet. A direct hybrid finite element – wave based modelling technique for efficient coupled vibro-acoustic analysis. Computer Methods in Applied Mechanics and Engineering, 200: 742–746, 2011.
  • [38] K. Vergote, B. Van Genechten, D. Vandepitte, W. Desmet. On the analysis of vibro-acoustic systems in the mid-frequency range using a hybrid deterministic-statistical approach. Computers & Structures, 89: 868–877, 2011.
  • [39] M.L. Williams. Stress Singularities Resulting from various Boundary Conditions in Angular Corners of Plates in Extension. Journal of Applied Mechanics, 74: 526–528, 1952.
  • [40] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, P. Nithiarasu. The Finite Element Method – The three volume set. Butterworth-Heinemann, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0070-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.