PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element formulations for 3D convex polyhedra in nonlinear continuum mechanics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present finite element formulations for general three-dimensional convex polyhedra for use in a common finite element framework that are well suited, e.g., for modeling complex granular materials and for mesh refinements. Based on an universally applicable interpolant for any convex polyhedron, different interpolation schemes are investigated in the context of nonlinear elastostatics. The modeling benefits and the numerical performance regarding the mechanical response and the computational cost are analyzed by several examples.
Rocznik
Strony
121--134
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] V.V. Belikov, V.D. Ivanov, V.K. Kontorovich, S.A. Korytnik, A.Y. Semenov. The non-Sibsons interpolation: A new method of interpolation of the values of a function on an arbitrary set of points. Comput. Math. Math. Phys., 37(1): 9–15, 1997.
  • [2] A. Constantiniu, P. Steinmann, T. Bobach, G. Farin, G. Umlauf. The adaptive Delaunay tessellation: a neighborhood covering meshing technique. Comput. Mech., 42(5):655–669, 2008.
  • [3] G. Dasgupta. Interpolants within convex polygons: Wachspress shape functions. J. Aero. Eng., 16: 1–8, 2003.
  • [4] M. Floater. Mean value coordinates. Comput. Aided Geomet. Des., 20: 19–27, 2003.
  • [5] M. Groeber, S. Ghosh, M.D. Uchic, D.M. Dimiduk. Developing a robust 3-D characterization-representation framework for modeling polycrystalline materials. J. Miner. Met. Mater. Soc., 59(9): 32–36, 2007.
  • [6] M.A. Groeber, B. Haley, M.D. Uchic, D.M. Dimiduk, S. Ghosh. 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater. Char., 57(4–5): 259–273, 2006.
  • [7] H. Hiyoshi, K. Sugihara. Another interpolant using Voronoi diagrams. IPSJ SIG Notes, 98-AL-62: 33–40, 1998. In Japanese.
  • [8] K. Hormann, M.S. Floater. Mean value coordinates for arbitrary polygons. ACM Trans. Graph., 25(4): 1424– 1441, 2006.
  • [9] Y. Lipman, D. Levin, D. Cohen-Or. Green coordinates. ACM Trans. Graph., 27:78: 1–10, 2008.
  • [10] E.A. Malsch, J.J. Lin, G. Dasgupta. Smooth two dimensional interpolations: A recipe for all polygons. J. Graph. Tool, 10(2): 27–39, 2005.
  • [11] M. Meyer, H. Lee, A. Barr, M. Desbrun. Generalized barycentric coordinates on irregular polygons. J. Graph. Tool, 7: 13–22, 2002.
  • [12] S. Reese. A large deformation solid-shell concept based on reduced integration with hourglass stabilization. Int. J. Numer. Meth. Eng., 69: 1671–1716, 2007.
  • [13] S. Reese, M. K¨ussner, B. Reddy. A new stabilization technique for finite elements in non-linear elasticity. Int. J. Numer. Meth. Eng., 44: 1617–1652, 1999.
  • [14] M. Sambridge, J. Braun, H. McQueen. Geophysical parameterization and interpolation of irregular data using natural neighbours. Geophys. J. Int., 122: 837–857, 1995.
  • [15] H. Si. TetGen – A quality tetrahedral mesh generator and three-dimensional Delaunay triangulator. Weierstrass Institute for Applied Analysis and Stochastics, Berlin, 1.4 edition, 01 2006.
  • [16] R. Sibson. A vector identity for the Dirichlet tessellation. Math. Proc. Camb. Phil. Soc., 87(1): 151–155, 1980.
  • [17] R. Sibson. A brief description of natural neighbor interpolation. In V. Barnett, editor, Interpreting Multivariate Data, chapter 2, pages 21–36. Wiley, Chichester, 1981.
  • [18] N. Sukumar, E.A. Malsch. Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Meth. Eng., 13(1): 129–163, 2006.
  • [19] N. Sukumar, B. Moran, T. Belytschko. The natural element method in solid mechanics. Int. J. Numer. Meth. Eng., 43: 839–887, 1998.
  • [20] N. Sukumar, B. Moran, A.Y. Semenov, V.V. Belikov. Natural neighbor Galerkin methods. Int. J. Numer. Meth. Eng., 50: 1–27, 2001.
  • [21] N. Sukumar, A. Tabarraei. Conforming polygonal finite elements. Int. J. Numer. Meth. Eng., 61(12): 2045–2066, 2004.
  • [22] L. Traversoni. Modified natural neighbor interpolant. Proceedings of SPIE, 1830: 196–203, Nov. 1992.
  • [23] N. Uhlmann, J. Pavlovic, M. Hilbinger, M. Salamon, F. Nachtrab, R. B¨ahr, F. Mnich, R. Hanke. Fast 3D-analysis of texture features – Possibilities of high resolvent X-ray computer tomography in the analysis of texture features of metallic material. VDI Reports, 2061: 81–89, 2009 (In German).
  • [24] E.L. Wachspress. A rational finite element basis. Number 114 in Mathematics in Science and Engineering. Academic Press, New York, 1975.
  • [25] J. Warren. Barycentric coordinates for convex polytopes. Adv. Comput. Math., 6: 97–108, 1996.
  • [26] J. Warren. On the uniqueness of barycentric coordinates. Contemp. Math., 334: 93–99, 2003.
  • [27] J. Warren, S. Schaefer, A.N. Hirani, M. Desbrun. Barycentric coordinates for convex sets. Adv. Comput. Math., 27: 319–338, 2007.
  • [28] D. Watson. Compound signed decomposition, the core of natural neighbor interpolation in n-dimensional space, 2001.
  • [29] S. Weißer. Residual error estimate for BEM-based FEM on polygonal meshes. Numer Math., 118: 765 788, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0070-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.