Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main objective of the presented study is an evaluation of the effectiveness of various methods for estimating statistics of rotor-shaft vibration responses. The computational effectiveness as well as the accuracy of statistical moment estimation are essential for e?cient robust design optimization of the rotor-shaft systems. The compared methods include sampling techniques, the perturbation approach, the dimension reduction method and the polynomial chaos expansion method. For comparison, two problems of the rotor-shaft vibration analysis are considered: a typical single-span rotor-shaft of the eight-stage centrifugal compressor driven by the electric motor and a large multi-bearing rotor-shaft system of the steam turbo-generator. The most important reason for the observed scatter of the rotor-shaft vibration responses is the inherently random nature of residual unbalances as well as stiffeness and damping properties of the journal bearings. A proper representation of these uncertain parameters leads to multidimensional stochastic models. It was found that methods that provide a satisfactory balance between the estimation accuracy and computational effectiveness are sampling techniques. On the other hand, methods based on Taylor series expansion in most of the analyzed cases fail to approximate the rotor-shaft response statistics.
Rocznik
Tom
Strony
95--120
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5B, 02-106 Warsaw, Poland, rstocki@ippt.pan.pl
Bibliografia
- [1] H.-G. Beyer and B. Sendhoff. Robust optimization – A comprehensive survey. Computer Methods in Applied Mechanics and Engineering, 196: 3190–3218, 2007.
- [2] G. Blatman and B. Sudret. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics, 25:183–197, 2010.
- [3] J.H. Choi, W.H. Lee, J.J. Park, and B.D. Youn. A study on robust design optimization of layered plate bonding process considering uncertainties. Structural and Multidisciplinary Optimization, 35: 531–540, 2008.
- [4] R.G. Ghanem and P.D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer Verlag, 1991.
- [5] J.C. Helton and F.J. Davis. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering and System Safety, 81: 23–69, 2003.
- [6] B. Hu and X. Du. Analytical robustness assessment for robust design. Structural and Multidisciplinary Optimization, 34: 123–137, 2007.
- [7] Z. Kang. Robust Design Optimization of Structures under Uncertainty. Ph.D. Thesis, Institut f¨ur Statik und Dynamik der Luft- und Raumfahrkonstruktionen Universit¨at Stuttgart, 2005.
- [8] M. Kleiber and T.D. Hien. The Stochastic Finite Element Method. Wiley, 1992.
- [9] A. Laschet. Simulation von antriebssystemen. Structural Engineering and Mechanics, Springer-Verlag, Berlin, Heidelberg, London, New-York, Paris, Tokyo, 1988.
- [10] I. Lee, K.K. Choi, L. Du, and D. Gorsich. Dimension reduction method for reliability-based robust design optimization. Computers and Structures, 86: 1550–1562, 2008.
- [11] S.H. Lee and W. Chen. A comparative study of uncertainty propagation methods for black-box-type problems. Structural and Multidisciplinary Optimization, 37: 239–253, 2009.
- [12] S.H. Lee, W. Chen, and B.M. Kwak. Robust design with arbitrary distributions using gauss-type quadrature formula. Structural and Multidisciplinary Optimization, 39: 227–243, 2009.
- [13] S.H. Lee, H.S. Choi, and B.M. Kwak. Multilevel design of experiments for statistical moment and probability calculation. Structural and Multidisciplinary Optimization, 37: 57–70, 2008.
- [14] M.D. McKay, R.J. Beckman, and W.J. Conover. A comparison of three methods for selecting values of input variables from a computer code. Technometrics, 21: 239–245, 1979.
- [15] A. Nataf. Determination des distribution dont les marges sont donnees. Comptes Rendus de l’Academie des Sciences, 225: 42–43, 1962.
- [16] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C. Cambridge University Press, 1988.
- [17] S. Rahman and H. Xu. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probabilistic Engineering Mechanics, 19: 393–408, 2004.
- [18] M. Rosenblatt. Remarks on multivariate transformation. The Annals of Mathematical Statistics, 23: 470–472, 1952.
- [19] E. Saliby. Descriptive sampling: an improvement over latin hypercube sampling. In S. Andradottir, K.J. Healy, D.H. Withers, and B.L. Nelson, editors, Proceedings of the Winter Simulation Conference, pages 230–233, 1997.
- [20] R. Stocki, P. Tauzowski, and M. Kleiber. Efficient sampling techniques for stochastic simulation of structural systems. Computer Assisted Mechanics and Engineering Sciences, 14: 127–140, 2007.
- [21] B. Sudret. Uncertainty propagation and sensitivity analysis in mechanical models – contributions to structural reliability and stochastic spectral methods. Clermont-Ferrand (France): Habilitation `a diriger des recherches. Universit´e Blaise Pascal, 2007.
- [22] T. Szolc. On the discrete-continuous modeling of rotor systems for the analysis of coupled lateral-torsional vibrations. Int. Journal of Rotating Machinery, 6(2): 135–149, 2000.
- [23] T. Szolc, P. Tauzowski, J. Knabel, and R. Stocki. Nonlinear and parametric coupled vibrations of the rotor-shaft system as fault identification symptom using stochastic methods. Nonlinear Dynamics, 57: 533–557, 2009.
- [24] T. Szolc, P. Tauzowski, R. Stocki, and J. Knabel. Damage identification in vibrating rotor-shaft systems by efficient sampling approach. Mechanical Systems and Signal Processing, 23: 1615–1633, 2009.
- [25] Y. Tsompanakis, N.D. Lagaros, and M. Papadrakakis, editors. Structural Design Optimization Considering Uncertainties, Structures and Infrastructures Series. Taylor and Francis, 2007.
- [26] J.A. V´azques and L.E. Barrett. Modeling of tilting-pad journal bearings with transfer functions. In Agnes Muszyńńska, editor, Proc. 7th Int. Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-7, Honolulu, Hawaii, February (1998), volume A, pages 472–481, 1998.
- [27] H. Xu and S. Rahman. A generalized dimension-reduction method for multidisciplinary integration in stochastic mechanics. International Journal for Numerical Methods in Engineering, 61: 1992–2019, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0070-0016