Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper addresses various scale-bridging modeling and discretization strategies for multiphase porousmaterials, starting with a micromechanics model for ion transport within the pore space to generate homogenized diffusion coefficients. Using homogenized macroscopic properties, the theory of poromechanicsprovides the modeling framework for the macroscopic representation of transport and phase change processes as it is demonstrated for freezing of porous materials using a three-field formulation. The theory of poromechanics is again employed as an appropriate representation of more or less intact porous materials, in conjunction with a two-field Extended Finite Element model as a scale bridging tool to describe coupledhydro-mechanical processes in cracked porous materials at a macroscopic level.
Rocznik
Tom
Strony
73--89
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
- Institute for Structural Mechanics Ruhr University Bochum 44780 Bochum, Germany, guenther.meschke@rub.de
Bibliografia
- [1] N. Barton, S. Bandis, and K. Bakhtar. Strength, deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22: 121–140, 1985.
- [2] C. Becker, S. Jox, and G. Meschke. 3D higher-order X-FEM model for the simulation of cohesive cracks in cementitious materials considering hygro-mechanical couplings. Computer Modeling in Engineering and Sciences, 57(3): 245–276, 2010.
- [3] M.A. Biot. General theory of three-dimensional consolidation. Journal of Applied Physics, 12: 155–165, 1941.
- [4] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer, Berlin, 1991.
- [5] M. Cieszko. Description of anisotropic pore space structure of permeable materials based on Minkowski metric space. Arch. Mech., 61: 425–444, 2009.
- [6] O. Coussy. Mechanics of Porous Continua. John Wiley & Sons, Chichester, 1995.
- [7] O. Coussy. Poromechanics of freezing materials. J. Mech. Phys. Solids, 53: 1389–1718, 2005.
- [8] O. Coussy and P. Monteiro. Poroelastic model for concrete exposed to freezing temperatures. Cement and Concrete Research, 38: 40–48, 2008.
- [9] P. Dadvand, J. Mora, C. Gonz´alez, A. Arraez, P.A. Ubach, and E. O?nate. KRATOS: An Object-Oriented Environment for Development of Multi-Physics Analysis Software. In H.A. Mang, F.G. Rammerstorfer, and J. Eberhardsteiner, editors, WCCM V, Fifth World Congress on Computational Mechanics, 2002.
- [10] A. Delagrave, B. G´erard, and J. Marchand. Modelling the calcium leaching mechanisms in hydrated cement pastes. In K.L. Scrivener and J.F. Young, editors, Mechanisms of Chemical Degradation of Cement-based Systems, pages 38–49, London, 1997. Chapmann & Hall.
- [11] L. Dormieux and E. Lemarchand. Homogenization approach of advection and diffusion in cracked porous material. American Society of Civil Engineers - Engineering Mechanics, 127(12): 1267–1274, 2001.
- [12] J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A, 241: 376–396, 1957.
- [13] B. G´erard. Contribution des Couplages M´ecanique-Chimie-Transfert dans la Tenue a long Terme des Ouvrages de Stockage de D´echets Radioactifs. Ph.D. Thesis, Laboratoire de M´echanique et Technologie. E.N.S. de Cachan, 1996.
- [14] S. Grasberger and G. Meschke. Thermo-hygro-mechanical degradation of concrete: From coupled 3D material modelling to durability-oriented multifield structural analyses. Materials and Structures, 37: 244–256, May 2004. Special Issue on Poromechanis of Concrete.
- [15] G. Hofstetter and G. Meschke, editors. Numerical Modeling of Concrete Cracking, volume 532 of CISM Courses and Lectures. Springer Wien New York, 2011. 327 pages.
- [16] T.J.R. Hughes, G.R. Feijoo, L. Mazzei, and J.B. Quincy. The variational multiscale method: a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166:3–24, 1998.
- [17] V. Kouznetsova, M.G.D. Geers, and W.A.M. Brekelmans. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering, 54: 1235–1260, 2002.
- [18] J. Kruschwitz, I. Bevanda, S. Krimpmann, D. Kuhl, M. Setzer, and G. Meschke. Durability of cementitious materials and the role of the pore structure: Experimental observations and numerical modelling. In F. Stangenberg, O.T. Bruhns, D. Hartmann, and G. Meschke, editors, Life-time oriented Design Concepts, pages 449–470. SFB 398, 2007.
- [19] D. Kuhl, F. Bangert, and G. Meschke. Coupled chemo-mechanical deterioration of cementitious materials. Part 1: Modeling. International Journal for Solids and Structures, 41: 15–40, 2004.
- [20] D. Kuhl and M.A. Crisfield. Energy-conserving and decaying algorithms in non-linear structural dynamics. Int. J. Num. Meth. in Eng., 45(5): 569–599, 1999.
- [21] D. Kuhl and G. Meschke. Computational modeling of transport mechanisms in reactive porous media – application to calcium leaching of concrete. In R. de Borst, H.A. Mang, N. Bićanić, and G. Meschke, editors, Computational Modelling of Concrete Structures, pp. 473–482. Balkema, 2003.
- [22] R. Lackner, A. Amon, and H. Lagger. Artificial ground freezing of fully saturated soil: Thermal problem. Journal of Engineering Mechanics, 131(2): 211–220, February 2005.
- [23] Y. Lee and K.C. Park. Numerically generated tangent stiffness matrices for nonlinear structural analysis. Computer Methods in Applied Mechanics and Engineering, 191(51–52): 5833–5846, 2002.
- [24] D. Leonhart and G. Meschke. Extended finite element method for hygro-mechanical analysis of crack propagation in porous materials. Proceedings in Applied Mathematics and Mechanics, 2011, DOI: 10.1002/pamm.201110072.
- [25] G. Meschke and S. Grasberger. Numerical modelling of coupled hygro-mechanical degradation of cementitious materials. American Society of Civil Engineers – Engineering Mechanics, 129(4): 383–392, 2003.
- [26] C. Miehe and C. G. Bayreuther. On multiscale FE analyses of heterogeneous structures: From homogenization to multigrid solvers. International Journal for Numerical Methods in Engineering, 71: 1135–1180, 2007.
- [27] N. Mo¨es, J.E. Dolbow, and T. Belytschko. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46: 131–150, 1999.
- [28] T. Mori and K. Tanaka. Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metallica, 21(5): 571–574, 1973.
- [29] L. Onsager and R. M. Fuoss. Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes. Journal of Physical Chemistry, 36: 2689–2778, 1932.
- [30] J. Rethore, R. de Borst, and M.-A. Abellan. A two-scale model for fluid in an unsaturated porous medium with cohesive cracks. Computational Mechanics, 42: 227–238, 2008.
- [31] S. Roels, K. Vandersteen, and J. Carmeliet. Measuring and simulating moisture uptake in a fractured porous medium. Advances in Water Resources, 26: 237–246, 2003.
- [32] L. Shen and Z. Chen. Critical review of the impact of tortuosity on diffusion. Chemical Engineering Science, 62: 3748–3755, 2007.
- [33] D.T. Snow. Anisotropic permeability of fractured media. Water Resources Research, 5: 1273–1289, 1969.
- [34] F. Stangenberg, R. Breitenbücher, O.T. Bruhns, D. Hartmann, D. Kuhl, and G. Meschke, editors. Lifetime-Oriented Structural Design Concepts. Springer Berlin, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0069-0005