PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy Saving Robust Control of Active Magnetic Bearings in Flywheel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reports on the investigation and development of the flywheel device as a energy storage system (FESS). The FESS is designed to operate in a vacuum and is supported on a low energy controlled active magnetic bearings (AMBs). The goal was to design and experimentally test the self integrated flywheel conception with a smart control of the flywheel rotor magnetic suspension. The low power control approach, with the reduced bias current, of the flywheel active magnetic bearings is used. The weighting functions are designed in order to meet robust control conditions. The laboratory investigations of the flywheel with high gyroscopic effect operated at low speed met the control and energy performances requirements.
Rocznik
Strony
72--75
Opis fizyczny
Rys.
Twórcy
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45C, 15-351 Bialystok, Poland, a.mystkowski@pb.edu.pl
Bibliografia
  • 1. Bolund B., Bernhoff H., Leijon M. (2007), Flywheel energy and power storage systems, Elsevier, Vol. 11, 235-258.
  • 2. Charara A., Caron B. (1992), Magnetic Bearing: Comparison Between Linear And Nonlinear Functioning, Proc. of the 3rd Int. Symposium on Magnetic Bearings, 451-463.
  • 3. Charara A., Miras J., Caron B. (1996), Nonlinear Control of a Magnetic Levitation System Without Premagetization, IEEE TraNo. Control Sys. Tech., Vol. 4, No. 5, 513–523.
  • 4. Fremery J. K. (1992), Axially stabilized magnetic bearing having a permanently magnetized radial bearing, US patent No. 5,126,610; 30.
  • 5. Gabrys C. W. (2001), High Performance Composite Flywheel, US patent Pub. No.: US 2001/0054856 A1.
  • 6. Gosiewski Z., Mystkowski A. (2006), The Robust Control of Magnetic Bearings for Rotating Machinery, Solid State Phenomena, VOL. 113, 125-130.
  • 7. Gosiewski Z., Mystkowski A. (2008), Robust Control of Active Magnetic Suspension: Analytical and Experimental Results, Mechanical Systems & Signal Processing., Vol. 22, No. 6, 1297-1303.
  • 8. Hu T., Lin Z., Allaire P. E. (2004), Reducing Power Loss in Magnetic Bearings by Optimizing Current Allocation, IEEE TraNo. on Magnetics, Vol. 40, No. 3, 1625-1635.
  • 9. Kameno H, Kubo A., Takahata R. (2003), Basic Design of 1 kWh Class Compact Flywheel Energy Storage System, Koyo Engineering Journal, No.163, 44-48.
  • 10. Kubo A., et al. (2003), Dynamic Analysis And Levitation Test in 1kWh Class Flywheel Energy Storage System, Proc. of 7th Int. Symposium on Magnetics Tech., 144-149.
  • 11. Larsonneur R. (1990), Design and Control of Active Magnetic Bearing System For High Speed Rotation, Diss. Eth, Zurich No.. 9140.
  • 12. Lottin J., Mouille P., Ponsart J. C. (1994), Nonlinear Control of Active Magnetic Bearings, Proc. of the 4th Int. Symposium on Magnetic Bearings, Eth Zurich, 101-106.
  • 13. Maslen E. Hermann P., Scott M. (1989), Practical Limits to the Performance of Magnetic Bearings: Peak Force, Slew Rate And Displacement Sensitivity, ASME Journal on Tribology, Vol. 111, 331-336.
  • 14. Nathan G. W., Jeremiah I. R. (2002), Flywheel System With Parallel Pumping Arrangement, U.S. Pat. 6 347 925 B1.
  • 15. Norman C. B. (2002), Stiff Metal Hub for an Energy Storage Rotor, U.S. Pat. 6 817 266.
  • 16. Schweitzer G. (2002), Active Magnetic Bearings – Chances and Limitations, 8th Int. Symposium on Magnetic Bearings, Mito JapaNo.
  • 17. Sivrioglu S., Nonami K., et al., (2002), Nonlinear Adaptive Control For a Flywheel Rotor AMB System with Unknown Parameter, Proc. of 8th International Symposium on Magnetic Bearings, ISMB-8, 593-598.
  • 18. Sivrioglu S., Nonami K., Takahata R., Kubo A. (2003), Adaptive Output Backstepping Control of a Flywheel Zero-Power AMB System With Parameter Uncertainty, Proc. of 42nd IEEE Conference on Decision and Control (CDC), 3942-3947.
  • 19. Smith R. D., Weldon W. F. (1995), Nonlinear Control of a Rigid Rotor MBS: Modeling and Simulation With Full State Feedback, IEEE TraNo. on Mag., Vol. 31, 973-980.
  • 20. Swedish patent, (1998), No. 508 442, Elektrodynamiskt magnetlager.
  • 21. Tomczuk B., Wajnert D., Zimon J. (2011), Modelling of control system for an active magnetic bearing, Proc. of Electrotechnical Institute, No. 252, 1-14.
  • 22. Tomczuk B., Zimon J. (2009), Filed Determination and Calculation of Stiffness Parameters in an Active Magnetic Bearing (AMB), Solid State Phenomena, Vol. 147-149, 125-130.
  • 23. Torries M. Sira-Ramirez H., Escobr G. (1999), Sliding Mode Nonlinear Control of Magnetic Bearings, Proc. of the IEEE Int. Conference on Control Applications, 743-748.
  • 24. Ward R. S. (2005), Composite Flywheel Rim With Co-Mingled Fiber Layers And Methods Of Determining The Same, U.S. Pat. 6 884 039 B2.
  • 25. www.igbt-driver.com/english/news/scale_hvi.shtml, CT-Concept Tech. Ltd, homepage accessed Nov 2004
  • 26. www.pwrx.com, Powerex, Inc., homepage accessed Nov 2004,
  • 27. Zhang Y., Nonami K. (2002), Zero Power Control of 0.5KWh Class Flywheel System Using Magnetic Bearing with Gyroscopic Effect, Proc. of 8th International Symposium on Magnetic Bearings ISMB-8, 587-592.
  • 28. Zhou K., Doyle J. (1998), Essentials of Robust Control, Prentice Hall.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0068-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.