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Abstract: A new fast energy efficient learning algorithm suitable for hardware implemented Kohonen Self-Organizing Map (SOM) is pro-
posed in the paper. The new technique is based on a multistage filtering of the quantization error. The algorithm detects such periods 
in the learning process, in which the quantization error is decreasing (the ‘activity’ phases), which can be interpreted as a progress in train-
ing, as well as the ‘stagnation’ phases, in which the error does not decrease. The neighborhood radius is reduced by 1 always just after the 
training process enters one of the ‘stagnation’ phases, thus shortening this phase. The comprehensive simulations on the software model 
(in C++) have been carried out to investigate the influence of the proposed algorithm on the learning process. The learning process has 
been assessed by the used of five criteria, which allow assessing the learning algorithm in two different ways i.e., by expressing the quality 
of the vector quantization, as well as the topographic mapping. The new algorithm is able to shorten the overall training process by more 
than 90%  thus reducing the energy consumed by the SOM also by 90%. The proposed training algorithm is to be used in a new high per-
formance Neuroprocessor that will find a broad application in a new generation of Wireless Body Area Networks ( WBAN) used in the mon-
itoring of the biomedical signals like, for example, the Electrocardiogram (ECG) signals.  
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1. INTRODUCTION 

In the literature one can notice many attempts to employ artifi-
cial neural networks (ANNs) in the analysis of biomedical signals, 
including ECG signals (Chudáček et al., 2009; Fernández et al., 
2001; Lagerholm and Peterson, 2000; Leite et al., 2010; Osowski 
and Linh, 2001; Talbi et al., 2010; Tighiouart et al., 2003; Valenza 
et al., 2008; Wen et al., 2009). These attempts aim to develop 
such methods and tools that will enable automatic analysis of the 
biomedical signals thus aiding medical staff in their work. One 
of the significant directions is to enable a quick detection of atypi-
cal sequences in such signals that usually indicate various prob-
lems. One of the main problems encountered in this area is that 
all applications of the ANNs involve PC computers or other pro-
grammable devices and as such are not suitable for the applica-
tion in the Wireless Body Area Networks (WBAN). 

The author of the paper is going to develop a new ultra-low 
energy consumption ANN realized as a specialized CMOS chip – 
a Neuroprocessor. The proposed chip will find the application 
in modern medical diagnostics tools based on WBAN systems. 
The chip will offer advanced data processing and analysis abilities 
directly in particular sensors (nodes) of the WBAN. As a result, 
instead of using a battery that enlarges the sizes of the sensor, an 
alternative supply source based on the energy scavenged from 
the environment (e.g. the body heat) will be used. This, in turn, will 
allow miniaturization of the sensors, making the overall wearable 
system much more convenient for the patients than the systems 
offered on the market today. 

Due to the rapid growth in this research area a variety 
of learning algorithms and the architectures of the ANNs have 
been invented. Looking from the hardware realization point 

of view of such networks the most interesting solutions are those 
offering relatively simple learning algorithms. In this case, 
as simple arithmetic operations are being used, the algorithms 
require significantly less hardware resources. The resultant chips 
dissipate less power and occupy less chip area and thus are 
much more suitable for the application in the WBAN. A very sim-
ple and simultaneously fast learning algorithm is offered by the 
Kohonen Self-Organizing Map (SOM). This algorithm requires 
only basic arithmetic operations like addition, subtraction and 
multiplication. The Kohonen SOM is commonly used in the analy-
sis and classification of the ECG signals (Leite et al., 2010; 
Tighiouart et al., 2003; Valenza  et al., 2008;  Wen et al., 2009). 
In case of the classification tasks, the reported results for this type 
of the ANN are comparable or even better than the results 
achieved in the case of using other algorithms (Chudáček et al., 
2009; Ferna ́ndez et al., 2001; Lagerholm and Peterson, 2000; 
Osowski and Linh, 2001; Talbi et al., 2010; Tighiouart et al., 2003; 
Valenza et al., 2008). In case of the analysis of the ECG signals 
the reported efficiency of even 97% is possible for the number 
of neurons not exceeding 150. 

The Kohonen SOM already found the application in a weara-
ble system that enables analysis of the acquired data in the real-
time (Valenza et al., 2008). This system is able to recognize most 
significant cardiac arrythmias. The system is based on the Master 
Processing Unit (MPU) realized as the off-the-shelf SoC with the 
analog ECG signal conditioning circuit. The efficiency and sensi-
tivity reported in (Valenza et al., 2008) are at high level of up to 
99 %. 

The author of the paper recently designed programmable ar-
chitecture of the SOM that is able to operate with different topolo-
gies of the SOM and different neighborhood functions on a single 
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chip. The author proposed a fully parallel and asynchronous 
neighborhood mechanism that independently on the sizes of the 
map, allows for determining the distances from the winning neu-
ron to all neighboring neurons in the period less than 11 ns. 
The adaptation is then performed also in parallel in all neurons 
covered by the neighborhood range in a given learning cycle 
(Długosz et al., 2011; Kolasa et al., 2012). 

This paper presents one of the very important steps in the 
overall design process of the new chip - a new learning algorithm 
suitable for low power ANNs realized in hardware. The new algo-
rithm enables shortening the overall learning process of the SOM 
even by 90% thus reducing the energy consumption also by 90%. 

2. KOHONEN NEURAL NETWORK 

Teuvo Kohonen in 1975 proposed a new class of neural 
networks that use competitive unsupervised learning algorithms 
(Kohonen, 2001). His neural networks (KNNs) in their classical 
approach, also called self-organized map (SOM), contain one 
layer of neurons that form a map. The number of the outputs 
of the network equals the number of neurons, while all neurons 
have common inputs, whose number depending on the 
application can vary in-between two and even several dozen. 
SOMs are used in data visualization and analysis (Boniecki, 2005; 
Brocki, 2007; Mokriš and Forgáč, 2004 ). 

The competitive unsupervised learning in KNNs relies 
on presenting the network with the learning vectors X in order to 
make the neurons’ weight vectors W resemble presented data. 
For each training vector X KNN determines Euclidean distances 
(dEUC) between this vector and the weights vectors W in each 
neuron, which for n network’s inputs are calculated using the 
following formula: 

������, �	
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The neuron, whose weights are the most similar to the training 
vector X becomes a winner and is allowed to adapt own weights. 
Two general types of such networks can be distinguished. In the 
Winner Takes All (WTA) approach only the winning neuron 
is allowed to adapt the weight, while in the Winner Takes Most 
(WTM) algorithm also neurons that belong to the winner’s 
neighborhood are allowed to adapt the weights, according to the 
following formula: 
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where η is a learning rate that control strength of the learning 
algorithm, Wj denotes the weights’ vector of a given jth, neuron, 
and X(l) is a given input pattern in the lth cycle. Particular neurons 
that belong to the winner’s neighborhood are adapted with differ-
ent intensities, whose values depend on the neighborhood func-
tion G(). The commonly used neighborhood functions are: rectan-
gular and Gaussian neighborhood function. Different neighbor-
hood functions were defined by the author in (Kolasa, 2012). 

One of the important parameters is the network topology, 
which can be defined as a grid of neurons. This feature deter-
mines which neurons belong to the winner’s neighborhood 
for a given value of the radius R (Boniecki, 2005; Kohonen, 2001; 
Mokriš and Forgáč, 2004 ). The commonly used topologies are: 
a hexagonal one (Hex) in which particular neurons have maximum 
six neighbors and a rectangular with four (Rect4) and eight 
(Rect8) neighbors. 

The quality of the learning process can be evaluated 
by means of the quantization error (Qerr) and the topographic error 
(ET1), which are a commonly used criterias in such cases. In this 
paper the effectiveness of the learning process of the SOM 
is evaluated on the basis of five criteria described in (Lee and 
Verleysen, 2002). The quantization error is defined as: 
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where m is the number of learning patterns in the input data set, n 
is the number of the network inputs, while i identify the winning 
neuron. This criterion illustrates a way of fitting of the map to input 
data (Uriarte and Martin, 2005). A second measure used to as-
sess the quantization quality is the percentage of dead neurons 
(PDN), which tells us about the ratio of inactive (dead) neurons 
versus all neurons. Dead neurons are those neurons that never 
won the competition and as such have not become representa-
tives of any input data. These errors are detrimental to the as-
sessment of the topological order of the map.  

The quality of the topographic mapping is assessed using 
three measures (Lee and Verleysen, 2002). The first one is the 
Topographic Error ET1, which is defined as follows: 

23� = 1 − �
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This is one of the measures proposed by Kohonen (Kohonen, 
2001; Uriarte E. and Martin F., 2005). The value of λ(Xh) equals 1 
when for a given pattern X two neurons whose weight vectors that 
resemble this pattern to the highest extent are also direct neigh-
bors in the map. Otherwise the value of λ(Xh) equals 0. The lower 
the value of ET1 is, the better the SOM preserves the topology 
(Beaton et al., 2010; Uriarte and Martin, 2005). In an ideal case, 
the optimal value of ET1 equals 0. 

The remaining two measures of the quality of the topographic 
mapping do not require the knowledge of the input data. In the 
second criterion, in the first step, the Euclidean distances between 
the weights of an ρth neuron and the weights of all other neurons 
are calculated. In the second step, it has to be check if all p direct 
neighbors of neuron ρ are also the nearest ones to this neuron 
in the sense of the Euclidean distance measured in the future 
space. To express this requirement in a formal manner, let us 
assume that neuron ρ has p = |N(ρ)| direct neighbors, where p 
depends on type of the map topology. Let us also assume that 
function g(ρ) returns the value equal to the number of the direct 
neighbors that are also the closest to neuron ρ in the feature 
space. As a result, the ET2 criterion for P neurons in the map can 
be defined as follows: 
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7 ∑ 8�9


|;�9
|
79��                                                                    (5) 

The optimal value of ET2 equals 1. Considering the third crite-
rion, it is built around each neuron ρ a neighborhood in the feature 
space (Euclidean neighborhood) defined as a sphere with the 
radius: 

��<
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B�9 − �@B                                                (6) 

where Wρ are the weights of a given neurons ρ, while WS are the 
weights of its particular direct neighbors. Then it is necessary to 
count those neurons, which are not the closest neighbors of the 
neuron ρ, but are located inside R(ρ). The ET3 criterion, with the 
optimal value equal to 0, is defined as follows: 
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7 ∑ D{F|F ≠ <, F ∉ I�<
, B�9 − �@B < ��<
}D79��   (7) 



Marta Kolasa 
Fast and Energy Efficient Learning Algorithm  for Kohonen Neural Network Realized in Hardware 

54 

3. THE PROPOSED ALGORITHM 

In the Kohonen learning algorithm it is often assumed that the 
neighborhood range Rmax, which is the maximal neighborhood 
range R set up before starting the learning process, should cover 
at least half of the map (Kohonen, 2001) and then gradually de-
crease to zero. The reduction of the value of this parameter can 
be realized in the following manner: 

�L = 1.00001 + ��OPQ − 1
 ∙ �1 − L
�STU
                            (8) 

where k stands for the kth iteration, lmax is the total number of the 
iterations in the ordering phase of the learning process.  

In practice, as number of iterations usually is much larger than 
the maximum value (Rmax) of the neighborhood radius R, therefore 
the radius decreases always by ‘1’ after the number of iterations 
equals to: 

� = round� �STU
[STU
                                                                       (9) 

Value of the l parameter usually is in the range in-between 20 
and 200, depending on dimensions of the map. In case of an 
example map with 15x15 neurons, Rmax equals 29 or 14, for Rect4 
and Rect8 topologies, respectively. 

3.1. Applied methodology  

The author completed a series of simulations using the soft-
ware model (in C++) of the map to verify the commonly used 
‘linear’ approach. Simulations have been carried out for all three 
topologies (Hex, Rect4 and Rect8), sizes of the map varying in-
between 4x4 and 64x64 neurons, different numbers of inputs, 
different values of the initial neighborhood size, Rmax, different 
neighborhood functions (rectangular, triangular and Gaussian) 
and different training sets. The network was trained with 2D and 
3D data regularly placed in the input space, as well as with data 
randomly distributed in this space. Here the author reports on 
some selected results which can be regarded as being 
representative to the overall suite of experiments. The author 
presents results for 8x8 and 16x16 neurons for two example 2D 
data sets. The results for 2D sets have been selected for a better 
illustration (Lee et al., 2001; Lee and Verleysen, 2002; Su, 2002; 
Uriarte and Martin, 2005). In the first data set, data are divided 
into P classes (centers), where P equals the number of neurons 
in the map. Each center is represented by an equal number 
of learning patterns. The centers are placed uniformly in the input 
data space, as shown in Fig. 1a. This data set is in the paper 
called CREG. To achieved comparable results in this case, 
the input space was fitted to input data. For example, for the map 
with 8x8 neurons the values of the input signals were in the range 
of 0 to 1, while for 16x16 neurons the values was in the range 
of 0 to 2. As a result, in all cases the optimal value of Qerr equals 
16.2e-3, while the optimal values of the remaining parameters 
(PDN/ET1/ET2/ET3) are equal to 0/0/1/0, respectively. The optimal 
nonzero value of Qerr results from the arrangement of data. The 
regular arrangement allows for ideal distribution of all neurons 
over the input data space, assuming the training process was 
optimal. This approach facilitates a direct comparison of the re-
sults for different combinations of particular parameters mentioned 
above (Li, 2009). 

Second data set was composed of 1000 patterns randomly 
distributed over the selected region, as shown in Fig. 1b. This 
data set is called SQUARE in the paper. In this case input data 
are in the constant range, independently from the size of the map. 
As a result, for larger maps the Qerr  achieves smaller values. 

3.2. Selected simulation results  

Selected simulation results illustrating an example learning 
process are shown in Fig. 2. The Figure presents example illustra-
tive waveforms of the Qerr over time i.e. for particular iterations. 
The results are shown for example maps with 8x8 and 16x16 
neurons, the triangular neighborhood function and Rect8 topology, 
but similar results were commonly observed for different input 
data, network topologies and neighborhood functions. 

Observing the quantization error in time domain one can no-
tice that the ‘linear’ approach is not optimal. 

 

 
Fig. 1. Input data sets and the final placement of neurons for: 2D data  

 a) regularly; b) randomly distributed in the input  space 

The first important observation is that when the neighborhood 
radius R is larger than some critical value, the quantization error 
does not decrease, so in this period the network does not make 
any progress in training. For example, in diagram (b), for Rmax=6, 
the Qerr starts decreasing only around the 800th iteration, for R = 2 
i.e. for about 1/3 of the map size. So the conclusion is that the 
learning process may start with the value of the radius R, which 
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is smaller than the maximal value Rmax. This significantly shorts 
the overall training process. 

 

  

 

 
Fig. 2. The quantization error as a function of the number of iterations,  

  for: a) 16x16 SQUARE; b) 16x16 CREG2D; c) 8x8 SQUARE;  
  d) 8x8 CREG2D data file 

The main observation is that the quantization error Qerr does 
not decrease monotonically during the overall learning process. 
One can notice some distinct ‘activity’ phases, in which the error 
decreases rapidly and then the ‘stagnation’ phases, in which the 
value of the error remains almost constant. The activity phases 
take place immediately after the radius R is switched to a smaller 
value. Note that the stagnation phases usually are much longer 
than the activity phases, which in practice means that the network 

makes a progress in training only in short periods of the overall 
process. 

The algorithm proposed in this paper relies on shortening the 
stagnation phases. First it is necessary to detect automatically the 
activity and the stagnation phases, which is performed by the use 
of a set of linear and nonlinear filters. Such a multistage filtering 
of the quantization error detects the activity phases and controls 
the neighborhood radius R in such a way to significantly shorten 
the stagnation phases.  

This technique uses a special decision mechanism that auto-
matically switches over the radius R just after a given activity 
phase is finished. This starts a new activity phase, but for the new, 
smaller value of the radius R. As a result, the learning process 
may be even 90% faster than in the classic approach, in which the 
radius R decreases linearly. 

 

 

 
Fig. 3. Proposed 3-stage error filtering: a) the original waveform  

 and the lowpass, b) the highpass, c) the nonlinear median filtering  
 for 16x16 CREG2D data file 

3.3. The proposed technique  

The proposed 3-stage filtering of the error is presented 
in Fig. 3 for an example map with 16x16 neurons, triangular 
neighborhood function, Rect8 topology and CREG data base. 
In this case three filters have been used. The process of detection 
of the activity phases starts with a lowpass finite impulse response 
(FIR) filtering that removes the “noise” from the initial error 
waveform. This process is shown in Fig. 3a. In this case a simple 
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Butterworth flat filter has been used with the following coefficients: 
hLPi = {0.125, 0.375, 0.375, 0.125}. 

The next step is the highpass filtering operation that detects 
edges in the smoothed error waveform. This filter can be very 
simple, with the length not exceeding 4. In presented example 
a filter with the coefficients hHPi = {1, 1, -1, -1} has been employed. 
The resultant waveform is illustrated in Fig. 3b. The spikes in this 
waveform indicate the activity phases. The problem here is that 
the “noise” present in the initial error waveform is a source 
of additional undesired spikes, which often are as high as the 
‘activity’ spikes, although usually are narrower than the ‘activity’ 
spikes. To overcome this problem a nonlinear median filter has 
been additionally applied. The length of this filter has been 
selected in such a way to even the height of the ‘activity’ spikes 
and to eliminate the ‘noise’ spikes. An example median filter of the 
length 5 allows to eliminate the ‘noise’ spikes with the width equal  
or smaller than 2, as illustrated in Fig. 3c. 

The output signals of the highpass and the median filters are 
used by a decision mechanism that automatically switches over 
the radius R to smaller values. This procedure starts when 
the value at the output of the median filter becomes larger than 
a selected threshold value, which must be high enough to exclude 
the ‘noise’ spikes. Switching of the R parameter is performed 
when the signal at the output of the highpass filter starts falling 
that means that the training process is just entering the stagnation 
phase. 

 

 

 
Fig. 4. Proposed 3-stage error filtering for the training process  

 after optimization: a) the original waveform and the lowpass,  
 b) the highpass, c) the nonlinear median filtering  
  for 16x16 SQUARE data file 

The proposed algorithm work good with all investigated cases 
of neighborhood functions and network topologies. It is worth 
noticing that the proposed algorithm must cooperate with the 

classic ‘linear’ method. This is necessary in a situation, in which 
an ‘activity’ spike at the output of the median filter would be to 
small to activate the decision procedure. In this case the ‘linear’ 
method will switch over the radius R after l iterations that will stop 
a given stagnation phase. 

3.4. Performance analysis of the proposed solution  

Illustrative simulation results in case of the optimized training 
process are shown in Fig. 4 for an example network with 16x16 
neurons for SQUARE data set. In this case the entire training 
process has been shorten 10 times from initial 1000 iterations to 
100 iterations. 

 
Fig. 5. Estimated energy consumption regarded as a function  
           of the number of neurons and the number of learning iterations 

An important parameter is also the energy consumption of a 
neuron. The simulations of the overall SOM performed in Hspice 
environment show that a single neuron consumes 25–30 pJ per a 
single pattern X(l) for the CMOS 0.18µm process (Długosz R. et 
al., 2011). Fig. 5 shows the estimated energy consumption as a 
function of the number of neurons and the number of learning 
iterations for data set comprised of 1000 learning patterns in the 
worst case scenario, i.e. for the neighborhood range R covering 
the entire map. In practice, as the values of R are usually small, 
the energy consumption will be smaller. For an example map with 
16x16 neurons the energy consumption is equal to 7.7nJ during 
presentation of a single input pattern. When the number of itera-
tion is equal 1000 and data set is composed of 1000 patterns, the 
energy consumption will be equal to 7.7mJ. In case when the 
overall training process will be shorten 10 times from initial 1000 
iterations to 100 iterations the energy consumption wil be equal to 
0.77mW. So in case of the optimized training process the energy 
consumption will be also 10 times smaller. As we can see, one of 
the main advantages of hardware implemented network is a very 
low energy consumption. For the comparison, a single software-
model test during which the SOM processes 2 million input pat-
terns takes about 20 minutes. Based on the assumption that the 
power dissipation of a PC computer equals 250W, the energy 
consumption will equal 300kJ in this case. As a result, the 
achieved energy consumption in case of hardware implemented 
neural network is more than eight orders of magnitude smaller 
than in case of a similar network realized on PC. 
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Note that these results have been obtained for the CMOS 
0.18µm process. For the latest technologies below 65nm, the 
author expects a substantial improvement of the results. 

4. CONCLUSIONS 

A new simple learning algorithm for the WTM Kohonen SOM 
designed for low-power devices has been described in the paper. 
The proposed technique bases on the observation that the 
quantization error does not decrease monotonically during the 
learning process, but there are some activity phases, in which this 
error decreases very fast and then the stagnation phases, 
in which the error does not decrease. 

The proposed technique using a set of linear and nonlinear 
filters detects the activity phases and controls the neighborhood R 
in such a way to shorten the stagnation phases. As a result, the 
learning process may be more than 10 times faster and more than 
10 times energy efficient than in the classic approach, in which the 
radius R decreases linearly. 

The intended application of the proposed solution will be 
in Wireless Body Area Networks in the classification and analysis 
of the EMG and the ECG biomedical signals. 
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