PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Dynamics of Liquid Movement Inside the Nozzle During the Bubble Departures for Low Air Volume Flow Rate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of investigation was to analyze the influence of liquid movement inside the nozzle on the dynamics of bubble departure. Dynamics of such process decides about the periodic and aperiodic bubble departures. During the experiment it has been simultaneously recorded: changes of the depth of the nozzle penetration by liquid, air pressure and shape of bubble trajectory directly over the nozzle (in the length of 30 mm). The air volume flow rate was in the range 0.00632 - 0.0381 l/min. There has been shown that for all air volume flow rates the time periods with periodic and aperiodic bubble departures have been occurred. Duration of these intervals varies with the air volume flow rate. It has been found that the aperiodic bubble departures begin when the time of bubble growth increases. The changes of maximum values of liquid position inside the nozzle are associated with changes of the shape of bubble trajectories. There has been shown that straightens of the trajectory precedes the appearance of periodical or aperiodic time period of bubble departures. The aperiodic bubble departures are accompanied by a significant deviation of bubble trajectory from a straight line. The correlation dimension analysis shown that three independent variables are enough to describe the behaviour of liquid movement inside the nozzle. These independent variables may be: liquid velocity, liquid position in the nozzle and gas pressure in the nozzle.
Rocznik
Strony
31--36
Opis fizyczny
Bibliogr. 13 poz., Rys.
Twórcy
autor
autor
  • Białystok University of Technology, Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science. ul. Wiejska 45C, 15-351 Białystok, Poland, dzienis.pawel@gmail.com
Bibliografia
  • 1. Cieslinski J.T., Mosdorf R. (2005), Gas bubble dynamics experiment and fractal analysis, Int. J. Heat Mass Transfer, Vol. 48, No. 9, 1808–1818.
  • 2. Dukhin S.S., Koval’chuk V.I., Fainerman V.B., Miller R. (1998a), Hydrodynamic processes in dynamic bubble pressure experiments Part 3. Oscillatory and aperiodic modes of pressure variation in the capillary, Colloids and Surfaces A, Physicochemical and Engineering Aspects, Vol. 141, 253–267.
  • 3. Dukhin S.S., Mishchuk N.A., Fainerman V.B., Miller R. (1998b), Hydrodynamic processes in dynamic bubble pressure experiments 2. Slow meniscus oscillations, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 138, 51–63.
  • 4. Dzienis P., Wyszkowski T., Mosdorf R. (2012), Nonlinear analysis of liquid movement inside the glass nozzle during air bubble departures in water, Advances in Chemical and Mechanical engineering, 133-137.
  • 5. Koval’chuk V.I., Dukhin S.S., Fainerman V.B., Miller R. (1999), Hydrodynamic processes in dynamic bubble pressure experiments, Calculation of magnitude and time of liquid penetration into capillaries, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 151, 525–536.
  • 6. Mosdorf R., Shoji M. (2003), Chaos in bubbling - nonlinear analysis and modelling, Chem. Eng. Sci., Vol. 58, 3837–3846.
  • 7. Otto E., (1997), Chaos in Dynamical Systems. WNT (in Polish).
  • 8. Ruzicka M.C., R. Bunganic R., Drahos J. (2009b) , Meniscus dynamics in bubble formation. Part II: Model, Chemical Engineering Research and Design, Vol. 87, 1357–1365.
  • 9. Ruzicka, M.C., Bunganic, R. Drahos, J. (2009a), Meniscus dynamics in bubble formation, Part I: Experiment. Chem. Eng. Res. Des.,Vol. 87, 1349–1356.
  • 10. Schuster H.G. (1993), Deterministic Chaos. An Introduction, PWN, Warszawa 1993 (in Polish).
  • 11. Stanovsky P., Ruzicka M.C., Martins A., Teixeira J.A (2011), Meniscus dynamics in bubble formation: A parametric study, Chemical Engineering Science, Vol. 66, 3258–3267.
  • 12. Wolf A., Swift J.B., Swinney H.L., Vastano J.A. (1985) Determining Lyapunov Exponent from a Time series, Physica-D, Vol. 16, 285-317.
  • 13. Zang L., Shoji M., (2001), Aperiodic bubble formation from a submerged orifice, Chemical Engineering Science, Vol. 56, 5371-5381.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0068-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.