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Abstract: Recently, a finite element formulation, called the absolute nodal coordinate formulation (ANCF), was proposed for the large rota-
tion and deformation analysis of flexible bodies. In this formulation, absolute position and slope coordinates are used to define the finite el-
ement configuration. Infinitesimal or finite rotations are not used as nodal coordinates. The ANCF finite elements have many unique fea-
tures that distinguish them from other existing finite element methods used in the dynamic analysis of the flexible multibody systems. 
In such systems, there appears the necessity of solving systems of differential-algebraic equations (DAEs) of index 3. Accurate solving 
of the DAEs is a non-trivial problem. However, in the literature about the ANCF one can hardly find any detailed information about the pro-
cedures that are used to solve the DAEs. Therefore, the current paper is devoted to the analysis of selected DAE solvers, which are ap-
plied to simulations of simple mechanisms. 
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1. INTRODUCTION 

In flexible multibody systems (FMS), rigid, flexible and very 
flexible bodies are interconnected by mechanical joints that allow 
for large relative reference translations and rotations between 
bodies (Frączek, 2002). In recent years, a particular interest 
of many research centres concentrated on the problems of effec-
tive analysis of multibody systems, whose bodies undergo large 
deformations and displacements. One of such methods is the 
Absolute Nodal Coordinate Formulation (ANCF) (Shabana, 1997). 
The characteristic feature of this formulation is lack of rotational 
degrees of freedom. Instead, to define rotation, one uses three 
independent slope coordinate vectors. The result is that ANCF 
elements usually have more nodal coordinates than the standard 
elements used in the FEM analysis. However, a single ANCF 
element is capable to obtain some complex deformed shapes 
(Shabana and Yakoub, 2001). Moreover, beam and shell ANCF 
elements may be treated as isoparametric elements, so that an 
arbitrary rigid body displacements, including rigid body rota-
tions, produces zero strains (Shabana, 2003). On top of that, 
in the case of fully parameterised elements (i.e. those, which have 
all first-order slope vectors in each node), elastic forces may be 
calculated not only from classical beam, plate or shell theories, 
but also by using general continuum mechanics approach based 
on linear or nonlinear strain-displacement relationships. 

Additionally, in the ANCF method, mass matrix of system 
is a constant one, even in the case of three-dimensional analysis. 
This fact has an essential influence on effectiveness of methods 
used for solving equations of motion. Moreover, the formulae 
expressing external forces assume concise and simple forms. 
Because the mass matrix of the finite element is a constant ma-
trix, centrifugal and Coriolis forces do not appear in the equations 
of motion. Instead, elastic forces and their Jacobian matrix de-

pend strongly nonlinearly on nodal coordinates, even in the cases 
of simple systems consisting of two-dimensional elements. 

From the point of view of numerical analysis, the equations 
of motion used to describe a flexible multibody system constitute 
a system of differential-algebraic equations (DAE), whose struc-
ture is similar to that of equations describing rigid multibody sys-
tems (Frączek, 2002). Such a system has a differentiation index 
equal to 3, and consists of differential equations and algebraic 
constraints equations (usually nonlinear) (Haug, 1989). Solving 
differential-algebraic equations is a much more complicated and 
less recognized task than solving ordinary differential equations 
(ODE) (Brenan et al., 1996). This is because the DAEs have 
some features of weakly conditioned ordinary differential equa-
tions. Furthermore, in the case of thin or stiff structures, the ANCF 
coupled deformation modes can be associated with very high 
frequencies that can be source of numerical problems. Because 
of that, effectiveness of some integration algorithms is low (Hus-
sein et al., 2008). The mentioned characteristics of DAEs 
and ANCF cause that the choice of an adequate algorithm 
for integrating equations of motion is not a trivial task, and needs 
a thorough analysis (Frączek and Malczyk (in print)). In this work, 
we present an approach to the analysis of selection of DAE solv-
ers in application to simple analyses of dynamics of flexible 
mechanisms. 

Special, dedicated methods have been used for solving 
the differential-algebraic equations. In total, five different algo-
rithms were tested. The algorithms DASSL (Brenan et al., 1996), 
GAMD (Iavernaro and Mazzia, 1998), as well as Radau 
and Radau5 (Haier and Wanner, 1996) were provided for free 
by their authors. However, the algorithm HHT-I3 (Hussein et al., 
2008) is an original method, specially implemented for the needs 
of the ANCF. It is a generalization of the Hilbert-Hughes-Taylor 
(HHT) method (Bathe, 1996) applied to DAEs. All the algorithms, 
besides of the DASSL, are capable of directly solving DAEs 
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of index 3. In the case of the DASSL, it is necessary to convert the 
DAE system to the form of equations of index reduced to 1. 

The presented algorithms, applied for solving the DAEs, have 
been tested with the use of three long-term analyses of multibody 
systems. The analysed model was a simple mechanism 
of a single physical pendulum moving in a gravitational field. In the 
first case, the pendulum was modelled as a rigid body, in the 
second case – as a flexible body of high stiffness (high value 
of Young’s modulus), and the third model was a flexible pendulum 
of high flexibility. In each model, one analysed selected parame-
ters, such as changes of period and amplitude of oscillations, 
as well as changes in total energy of the system. Because dissi-
pation forces did not appear in the models, the total energy of the 
system should be preserved, so its value should not change 
in time. Moreover, for rigid pendulum, and for flexible pendulum 
of high stiffness, also period and amplitude of oscillations should 
keep their values unchanged. Then, the change in these values 
observed in a numerical solution may signify lack of accuracy 
of the applied method. 

The presented work is organised in the following way. In sec-
tion 2, we present the essentials of the absolute nodal coordinate 
formulation. Expressions defining basic quantities that appear 
in equations of motion are given there, as well as notation 
of differential-algebraic equations of the analysed motion. In sec-
tion 3, the analysed methods of solving of differential-algebraic 
equations of motion are briefly characterised. The results of per-
formed simulation of example tests are enclosed in section 4. 
The last section presents summary of results of the carried-out 
tests, and final conclusions. 

2. BACKGROUND 

A single node of fully-parameterised, three-dimensional ANCF 
element may be characterised by at least twelve parameters [13]: 

��� = ���� ����� � ����	 � ����
 �� (1) 

where � is node number, �� is the vector defining global position 

of the node, and vectors ���/�� are, for � = �, 	, 
, the global 
slope vectors of the element nodes. Here �, 	, 
 are the coordi-
nates of an arbitrary point on the element in the undeformed 
configuration. 

A standard ANCF beam element contains two fully-
parameterised nodes [16]: �� = ���� ���� (2) 

Using the definition of element nodal coordinates, given by 

equation (2), we can write position vector of an arbitrary point � 
in the form: �� = ���, 	, 
�� (3) 

where � is the matrix containing the element’s shape functions, 
which is independent of nodal coordinates. For the beam element, 
this matrix takes the form: � = ���� ��� ⋯ ���� (4) 

where ��, ��, … , �� are the element’s shape functions, and � 
is a 3 × 3 identity matrix. For the two-node ANCF beam element 
of twenty-four parameters, these functions can be represented 

as follows [16]: 

 !
"�� = 1 − 3%� + 2%(, �� = )�% − 2%� + %(�,�( = )�* − %*�, �+ = )�, − %,�,�- = 3%� − 2%(, �. = )�−%� + %(�,�/ = )%*, �� = )%,.  (5)

where ) is length of the element, while % = �/), * = 	/) 
and , = 
/) are the element natural coordinates. 

The mass matrix of ANCF element can be calculated based 
on kinetic energy relationships. The global velocity vector may be 
found by differentiating the position vector (3) with respect to time: 1� = �2� = ��2  (6)

Kinetic energy of the element can be defined as: 

34 = 125 61�1d89  (7)

where 6 and 8 are, respectively, mass density and volume 
of a finite element. It is worth noting that the density and the vol-
ume pertain to the initial configuration of an undeformed element. 

Substituting velocity equation (6) into equation (7) we obtain: 

34 = 12�2�5 6���d89 �2 = 12 �2�:�2  (8)

where : is the symmetric mass matrix of the finite element: 

: = 5 6���d89  (9)

It is worthy to note that the above matrix is a constant one. 
In the ANCF the Coriolis forces, tangent and centrifugal forc-

es, and other forces resulting from differentiation of kinetic energy 
are equal to zero. Therefore, non-zero force values in equations 
of motion can only originate from external forces, from reactions 
in nodes, and form elastic forces. The vector of elastic forces can 
be written as: 

;<� = �3<��  (10)

where 3< is the elastic energy. This energy can be expressed 

as a function of the Green-Lagrange strain vector =, and the 

second Piola-Kirchhoff stress vector > in the following form: 

3< = 125 =�>d89  (11)

For the linear elastic model of material, which is actually taken 
into consideration, we may formulate the following relationship 
between vectors of stress and strain: > = ?= (12)

where ? is the matrix of elastic coefficients. Substituting equation 
(12) into (11) we obtain: 

3< = 125 =�?=d89  (13)

Then, for calculating the value of elastic energy, it is enough 
to determine the strain vector. The latter is associated with the 
Green-Lagrange strain tensor, which can be found using the 
following relationship: 
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=@ = 12 �A�A − �� (14) 

where A is the deformation gradient matrix: 

A = ���B (15) 

Differentiating the function given by equation (13) with respect 
to the element nodal coordinates we obtain: 

;<� = 5 C�=��D�?=d89  (16) 

Making use of equation (16), one can directly determine elas-
tic force values for a given element. It is known, however, that 
when this relationship is used in the case of a classic ANCF beam 
element, there may appear volume locking [7]. To avoid this ef-
fect, one can apply selective reduced integration [6]. In order to do 

so, the matrix of elastic coefficients ? should be divided into two 
parts: ? = ?E + ?F (17) 

where Poisson effect is taken into account only in the matrix ?F. 

Then, ?E is a diagonal matrix having the following form: 

?E =
GHH
HHI
3 0 0 0 0 00 3 0 0 0 00 0 3 0 0 00 0 0 K 0 00 0 0 0 KL� 00 0 0 0 0 KL(MN

NNN
O
 (18) 

where 3 is the Young’s modulus, K is the Kirchhoff’s modulus, 

while L� and L( are shear correction factors that are used for 
correction of transverse shear stiffness. As one can see, the 

values in matrix ?E do not depend on the value of Poisson’s 
ratio P. 

The following equation shows how Poisson effect is taken into 

account in matrix ?F: 

?F = 3P�1 + P��1 − 2P� GHH
HHI
2P 1 1 0 0 01 2P 1 0 0 01 1 2P 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0MN

NNN
O
 (19) 

We substitute the formula of elastic coefficients (17) into elas-
tic energy equation (13) and obtain: 

3< = 125 =�?E=d89 + 125 =�?F=d8QRS
9  (20) 

where the component containing matrix ?E is computed using full 
integration, while the component with matrix ?F is integrated 
in a reduced way. In the case of the considered beam element, 
the reduced integration means that the function is integrated only 
along the beam’s axis. 

The only relationship to be determined is that of the general-
ised external force ;T associated with the gravity forces whose 

acceleration equals U: 

;T = 5 ��6Ud89  (21) 

Using the following expressions the dynamic equations of the 

flexible multibody system can be obtained in a matrix form as 
(Haug, 1989): 

V:�W + ;< +X��Y = ;TX = Z  (22)

where Y is vector of the Lagrange multipliers, vector X contains 
nonlinear constrains equations, while X� =	∂X/ ∂�	is Jacobian 
matrix of the vector of constrains relative to system parameters. 

Because constrains equations and their Jacobian matrix take 
a standard form, well known from rigid multibody systems Haug, 
1989; Nikravesh, 1988), they will not be described here in detail. 

Equations (22) can be solved by means of typical integration 
algorithms used for ordinary differential equations. It can be done 
after decreasing their differentiation index to one, i.e. by double 
differentiation of constrains equations. However, solving equations 
of such a type may lead to computational problems, so it is nec-
essary to apply measures stabilizing equations of constrains 
(i.e. Baumgarte stabilization (Nikravesh, 1988)). For that reason, 
a more effective way might be the application of algorithms dedi-
cated for solving differential-algebraic equations. 

3. AGORITHMS FOR SOLVING DIFFERENTIAL-ALGEBRAIC 
EQUATIONS 

Four algorithms applicable for solving equation (22) will be 
analysed in this section: the algorithm DASSL based on the 
backward differentiation formulae, the algorithms Radau and 
Radau5 based on implicit Runge-Kutta method, the algorithm 
GAMD based on generalised Adams method, and the algorithm 
HHT-I3 based on generalised HTT method. These algorithms 
represent different groups of numerical methods applicable for 
solving DAE systems. Therefore, the obtained results may contain 
valuable hints on applicability of various numerical schemes 
in solution of DAEs in the proposed initial formulation. 

In most of these algorithms, it is necessary to modify 
the solved equations, so that they take the forms adequate for the 
applied algorithm. Appropriate transformations will be presented 
in further part of this section. 

3.1. Method of backward differentiation – algorithm DASSL  

The software of DASSL is an implementation of the method 
of backward differentiation (Backward Differentiation Formulae, 
BDF) [2], with variable order of the method changing from one to 
five. This was one of the first numerical methods developed for 
integrating DAE systems. It allows solving differential-algebraic 
equations of index not greater than one.  

The differential scheme implemented in the DASSL procedure 
makes it possible to solve an equation system given in the follow-
ing, implicit form: ]�^, _`, _2`� = Z (23)

where _` is the system state vector, and ] is a vector of state 
equations. The program DASSL requires differential-algebraic 
equations expressed as a first-order system of equations. In order 
to reduce the order of equation (22), one can use the new set 
of variables: a = �2  (24)

However, to decrease the integration index, one can perform 
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one differentiation of the constrains vector with respect to time: X2 = X��2 + Xb = Z (25) 

Substituting equations (24) and (25) into (22), we obtain: 

c:a2 + ;< +X��Y = ;Ta − �2 = ZX�a + Xb = Z  (26) 

Exclusion of equations of constrains from the above system 
of equations causes that the constrains may be violated (Haug, 
1989). In order to prevent it, a new set of variables should be 
introduced, which leads to a formulation with index stabilization 
(the Gear-Gupta-Leimkuhler method (Gear at al., 1985)): 

d:a2 + ;< +X��Y = ;Ta − �2 + X��e = ZX�a +Xb = ZX = Z  (27) 

where e is the vector of the new variables, which have the char-
acter of Lagrange multipliers. One considers solution to the above 

equation system as a correct one if the vector e is permanently 
equal to zero. Numerical solution to equation (27) guarantees that 
the equations of position and velocity constrains are fully satisfied. 
The index of the above equation is equal to two. It can be further 
decreased to the value of one by substituting the multipliers Y and e with the new variables, f2 = Y and g2 = e. The obtained equa-
tion has a differentiation index equal to one. The method has 
many advantages, first of all one does not need to perform the 
double differentiation of constrains equations, thus avoiding high 
computational costs. After introducing the new variables, we 
obtain: 

d:a2 + ;< +X��f2 = ;Ta − �2 + X��g2 = ZX�a +Xb = ZX = Z  (28) 

The state vector and the vector of state equations, used in the 
DASSL program, have the forms: _` = �a� �� f� g�	�� (29) 

] = h:a2 + ;< +X��f2 − ;Ta − �2 + X��g2X�a + XbX i	 (30) 

It is noticeable that the vector ] depends both on the state 
vector, and its derivative. In order to effectively carry out the simu-

lation, one not only needs to calculate the value of vector ], but 
also calculate the Jacobian matrix for this vector with respect to 
the state vector, as well as its derivative. 

Making use of the relationships presented above, we can pre-
pare appropriate procedures needed by the DASSL program for 
the analysis of a multibody system. The advantage of the pre-
sented method, called the Stabilized Index 1 (SI1) formulation, 
is that it takes into account the influence of constrains on positions 
and velocities in the system. Owing to that fact, the obtained 
results are often more accurate in comparison to those which 
don’t take advantage of stabilization. A disadvantage of the SI1 
formulation is high computational cost associated with calculation 
of the vector ] and its Jacobian matrix. 

3.2. Implicit Runge-Kutta methods – algorithms Radau  
and Radau5 

The programs Radau and Radau5 are based on implicit 
Runge-Kutta methods (Radau IIA method) [8] with an automatic 
control of integration step. In the Radau method, the order 
is variable, equal to 5, 9 or 13, while the Radau5 method has 
a constant order, equal to 5. 

Both algorithms are used for solving weekly-conditioned ordi-
nary differential equations, as well as differential-algebraic equa-
tions of index not greater than 3. The algorithms are capable of 
solving first-order equations of the explicit form: :j_2j = kj�^, _j� (31)

where :j is a constant matrix of masses, _j is the state vector, 

and kj is a vector function of the right sides. In the case of solving 

DAEs :j is a singular matrix. This matrix must not be confused 
with the mass matrix : of a multibody system, i.e. that appearing 
in equation (22). 

Similarly as in the case of DASSL program, it is necessary to 
lower the order of equation to one, which can be done by substitu-
tion defined by equation (24). One obtains the equation of motion 
in the form: 

l: Z X��Z � ZZ Z Z m l
a2�2Ym = l

;T − ;<aX m (32)

The structure of the above equation reflects the structure 
of equation (31). However, it must be noted that the matrix corre-

sponding to the matrix :j is not a constant one. Due to this fact, 
the above equation should be re-written in a different form. 

In order to do so, one introduces new variables n = a2 , which 

represent accelerations of the vector �. Then, the differential 
equations may be written as additional constrains equations: 

hZ Z Z ZZ � Z ZZ Z � ZZ Z Z Zi h
n2a2�2Y2 i = h:n +X��Y + ;< − ;TnaX i (33)

On the basis of the above equations, one can easily write, 
in an explicit form, the matrix of masses and the vector of right 
sides for the Radau programs. It is clear that now the mass matrix 
is a constant (and singular) one. The state vector can be written 
as: _j = �n� a� �� Y�	�� (34)

To use the programs Radau and Radau5 effectively, one 
needs to calculate the Jacobian matrix for vector kj with respect 

to the state vector _j. This matrix takes a more simple form than 
the Jacobian matrix for the program DASSL (although computa-
tional cost is still high). 

3.3. Generalized Adams method – algorithm GAMD 

The GAMD software is an implementation of the generalized 
Adams method (GAM – acronym of Generalized Adams Method) 
(Iavernaro and Mazzia, 1998). This is a method of variable order 
(3, 5, 7 or 9), with automatic control of integration step. By using 
this algorithm, one can solve differential-algebraic equations 
of index not greater than 3. In this algorithm, the authors used 



acta mechanica et automatica, vol.6 no.2 (2012) 

79 

a part of the code from the procedure Radau5. 
The GAMD algorithm can solve equations having identical 

form as those solved by Radau5, i.e. given by equation (31). The 
algorithm solves equations in an explicit form, such as equation 
(33), with the state vector from equation (34). In practice, both 
Radau programs and the GAMD program use the same proce-
dures for calculating the mass matrix, the vector of right sides, 
and the Jacobian matrix of this vector. 

3.4. Generalized HHT method – algorithm HHT-I3 

The implicit algorithm HHT-I3 serves for directly solving differ-
ential-algebraic equations of index equal to 3, having the form 
represented by equation (22) (Hussein et al., 2008). The algorithm 
is based on classic Hilbert-Hughes-Taylor method (Bathe, 1996) 
adapted for solving DAEs of index equal to 3. This algorithm has 
the possibility of selecting the magnitude of numerical damping, 
and was tested in application to flexible bodies modelled with the 
use of the ANCF method. The algorithm offers the possibility 
of automatic selection of integration step. In contrast to previously 
described methods used for solving DAEs, any widely available 
implementation of this algorithm has not been known to the au-
thors. Because of that, the algorithm was originally implemented 
by the authors for the needs of this paper.  

The HHT method is often used for solving second-order ordi-
nary differential equations. It is based on the Newmark method 
(Bathe, 1996). Numerical damping, introduced into this method, 
facilitates eliminating undesirable, high-frequency oscillations. The 
Newmark method is unconditionally stable, but is characterised by 
first-order convergence. The HHT method also introduces numeri-
cal damping, is unconditionally stable, and guarantees second-
order (quadratic) convergence.  

When using the HHT-I3 method, we write equation (22) in the 
form: 

o:�W = pX = Z  (35) 

where the vector p�^, �, �2 � = ;T − ;< −X�qY. 
The algorithm HHT-I3 solves equation (35) in a direct way, 

so that there is no simple division into the vector of right sides and 
the state vector, unlike to what was needed in the case of previ-
ously described general-purpose algorithms. It is necessary, 
however, to assume initial conditions for positions and velocities, 
and prepare appropriate procedures for computation of the Jaco-
bian matrix. It is worth emphasizing that computational cost 
of determining Jacobian matrix in the procedure HHT-I3 is compa-
rable to that encountered in the programs Radau and GAMD. 
A detailed description of the HHT-I3 algorithm can be found 
in literature (Hussein et al., 2008). 

It should be emphasized that, in the program HHT-I3, there 
is no implemented procedure for assessing the necessity of recal-
culating the Jacobian matrix in a consecutive steps of integration. 
In consequence, this matrix is calculated in each integration step. 
This characteristic of the procedure causes that its effectiveness 
might be much lower than effectiveness of other algorithms, 
in which a method for assessing Jacobian matrix is implemented. 

4. TEST EXAMPLE 

Simple numerical tests are proposed for the programs pre-
sented in section 3. The tests are concerned with computations 

of dynamics of three-dimensional mechanisms, both rigid 
and flexible ones. The purpose of the tests is an initial assess-
ment of effectiveness of the integrating algorithms through evalua-
tion of their computational accuracy, numerical stability and time 
of computations. 

The computations were performed with the use of Fortran 
program on a computer equipped with a four-core, eight-thread 
processor with 3.4 GHz nominal frequency and 8 MB cache 
memory (Intel Core i7-2600K). 

As a test example, we have chosen a problem of dynamic 
analysis of a single physical pendulum fixed at one of its ends to 
a base by the revolute joint. The pendulum moves under the 
influence of gravitation forces. The element has a cuboidal shape 
of 40cm length, 4cm height and 2cm depth. In all models, the 
element’s material has a density of 7801kg/m3 and the Poisson 
ratio equal to 0,3. At the initial moment, the pendulum is in 
a horizontal position. 

It is known that rigid physical pendulum should move with 
constant frequency of oscillations and constant amplitude, irre-
spective of duration of stimulation time. In such a system, there 
are no dissipation forces, so that total energy of the system must 
be preserved. Of course, because of errors arising in the process 
of integration (including the integration and numerical errors) the 
value of the mentioned quantities might change in time. One can 
assess the range of this variability for individual algorithms.  

In the case of analysis of dynamics of a rigid physical pendu-
lum it is possible to calculate the theoretical period of oscillations. 
For an infinitesimal angle of oscillation, the theoretical period 
of oscillation can be expressed by the formula: 

rE = 2st uEvwx (36)

where uE is moment of inertia of the body with respect to the point 

of rotation, v is mass of the body, w is acceleration of gravity, 

and x is the distance between the centre of mass and the point of 
rotation. For the presented data, this period equals rE = 1.04s. 

In order to calculate the period of oscillation of a rigid physical 
pendulum moving in a finite rage of oscillation angles, one should 
determine the value of the following integral: 

rb = 2rEs 5 dz{1 − L� sin� z�/�
E  (37)

where z is the independent variable, and L = sin ���@��	, 
in which �@�� is the maximum angle of pendulum, measured with 
respect to the equilibrium position (in the considered case, this 

angle equals 90°). The integral was calculated numerically, and 

the period of oscillations was found equal to rb = 1.22s. 
In the simulations described in this section, one assumed the 

ending time equal to ^4 = 600s. During the simulations, 
we calculated the parameters such as total energy value, ampli-
tude decay, and elongation of oscillation period. The value of total 
energy was calculated directly. The percentage amplitude decay 
was calculated from the formula: 

�� = �E − ��E × 100% (38)

where �E is the theoretical value of amplitude, and � is its current 
value. Positive values of this parameter mean that oscillations are 
damped (the maximal value of 100% indicates complete decay 

of oscillations), while negative values of �� denote oscillations 
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of increasing amplitude. 
The period elongation of oscillations can be calculated 

in a similar way: 

r� = r − rbrb × 100% (39) 

where r is the current value of oscillation period, and rb is its 
theoretical value calculated from equation (37). For a rigid pendu-

lum, r� should be always equal to zero. Its negative value means 
shortening of the period. 

The results presented in Tab. 1, 2 and 3 are extreme values 
of the analysed quantities calculated for the whole duration 
of simulation. All the analyses were carried out for default values 
of majority of the parameters in solving procedures. The variable 
values were absolute errors (denoted as Atol) and relative errors 
(Rtol). When analysing the procedure HHT-I3, it was only possible 
to determine the value of relative error – the Atol value was ig-
nored in this procedure. 

4.1. Rigid physical pendulum 

In this case, position of the body is described with a vector 
of seven independent coordinates (three of them describing posi-
tion of the centre of mass, and four others are Euler parameters 
defining orientation of the body), and there are six equations 
of constrains (one equation for Euler parameters, and five equa-
tions for the revolute joint). Therefore, the analysed system has 
one degree of freedom. 

For a rigid body, total energy is a sum of element’s kinetic en-
ergy and its potential energy in gravitation field. In Tab. 1, there 
are presented results of performed simulations. In the cases 
of procedures Radau and Radau5, some of the simulations ended 
ahead of time, because the selected integration step was too 
small. In such a situation, there are no results in Table 1, and the 
value in the column of computational time means the time 
of simulation termination due to the procedure error. 

Tab. 1 presents results for three selected tolerance values. 

For the greatest tolerance value (test I), we managed to obtain 
acceptable results only in the case of the algorithm HHT-I3. For 
the remaining programs, simulation failed, or oscillations of pen-
dulum were strongly damped. The results obtained in test II 
showed that the algorithms DASSL, GAMD and HHT-I3 solved the 
problem without difficulties, and the simulation results could be 
considered as acceptable. In the cases of algorithms GAMD and 
HHT-I3, the oscillations were mildly damped; however, the algo-
rithm DASSL produced oscillations of increasing amplitude. This 
was an undesirable effect which, for a longer duration of simula-
tion, might indicate lack of convergence of the solution. 

When the lowest values of tolerances (test III) were applied, 
all the algorithms gave satisfactory results. In this case, the algo-
rithm DASSL proved the most effective, and gave very good 
overall results. It might result from the fact that the applied SI1 
formulation takes into account not only the equations of constrains 
(which are considered in all remaining algorithms), but also their 
velocities. 

The algorithm DASSL proved the best one as far as time 
of computations was concerned. The calculation step, selected by 
the program, was relatively big, and computation of the Jacobian 
matrix was performed not very frequently. Slower than this one 
were the algorithms from the Radau group. At the same time 
it should be noted that the results obtained with different algo-
rithms of this group, and the times of computations for the con-
stant-order algorithm (Randau5) and the variable-order algorithm 
(Radau) were comparable. 

The GAMD algorithm turned out to be twice slower than the 
Radau algorithms, however, it could solve the problem in which 
tolerance values were much higher. The HHT-I3 algorithm turned 
out to be the slowest one. It was due to the fact that, in this algo-
rithm, the Jacobian matrix was computed in each iteration step. 
Moreover, this method was designed especially for the needs 
of the ANCF method, therefore the algorithm might not optimally 
select integration step in the case of analysis of rigid bodies 
(where mass matrix is not a constant one). Nevertheless, by using 
this algorithm, we could obtain correct solution even for the great-
est tolerance values. 

Tab. 1. Results of simulation of rigid physical pendulum 

Tolerance Algorithm Total energy [J] Amplitude decay [%] Period elongation [%] Computation time [s] 

Test I: 

Atol 10�. 

Rtol 10�( 

DASSL -2.40 48.8 -8.99 0.82 

Rasau5 - - - sim. to 1.3 

Radau - - - sim. to 3.3 

GAMD -1.73 35.4 -6.85 9.67 

HHT-I3 -0.11 0.99 -0.22 9.87 

Test II: 

Atol 10�/ 

Rtol 10�- 

DASSL 0.27 -5.50 1.29 1.5 

Rasau5 - - - sim. to 37.6 

Radau - - - sim. to 130 

GAMD -0.59 12.0 -2.58 12.8 

HHT-I3 -0.39 7.9 -1.73 8.6 

Test III: 

Atol 10�� 

Rtol 10�/ 

DASSL 0.004 -0.08 0.02 2.9 

Rasau5 0.05 0.32 -0.07 8.5 

Radau 0.05 0.28 -0.06 8.6 

GAMD 0.05 -0.07 0.01 20.3 

HHT-I3 -0.03 0.6 -0.13 35.3 
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4.2. Flexible physical pendulum 

The pendulum was constructed with the use of standard, fully 
parameterised, ANCF beam elements. Elastic forces were com-
puted by applying selective, reduced integration, in order to avoid 
the influence of volume locking on the results. The pendulum, 
shown in Fig. 1, was divided into six finite elements, so that the 
system was described by eighty-four differential equations. Addi-
tionally, one must take into account six algebraic equations 
of constrains describing the revolute joint. In comparison to the 
rigid pendulum, this system of equation of motion consisted of the 
same number of algebraic equations, and twelve times greater 
number of differential equations. We also carried out simulations 
with the use of a pendulum consisting of ten finite elements. How-
ever, the differences between the results of simulation of this 
pendulum, and those obtained for the six-element pendulum were 
insignificant, so that only the latter would be presented here. 

 
Fig. 1. Flexible physical pendulum 

The simulations were carried out for two flexible models differ-
ing from one another by the values of Young’s modulus. In the 
first case, Young’s modulus was equal to 3 = 2 × 10�� Pa. 
Such a stiff pendulum should deform only insignificantly when 
moving in the field of gravitational forces. Because of that, the 
courses obtained in simulation should be similar to those of de-
termined for rigid pendulum. It means that the values of amplitude 
and period of oscillation are comparable to respective values 
of oscillation amplitude and period of the rigid pendulum. 

The difficulty of solving a system of high stiffness is associat-
ed with to the fact that the equations of a standard ANCF beam 
element with high value of Young’s modulus contain high-
frequency components, which causes numerical difficulties. The 
following example will illustrate how the above-described algo-
rithms could cope with solving a very stiff system of equations.  

In the second model, the value of Young’s modulus was de-

creased to 3 = 2 × 10/ Pa. The ANCF formulation is excep-
tionally effective in the case of models of low stiffness (Gerstmayr 
and Shabana, 2006), so that the described algorithms should 
solve this problem with relatively low computational cost. Low 
stiffness of the pendulum means that there might appear signifi-
cant deformations of various frequencies, so that making compar-
isons between amplitudes and oscillation periods is useless. 
Therefore, only total energy value was calculated for this model. 
The results shown in Tab. 1 and 2 indicate that the information 
about total energy value is sufficient for assessment of accuracy 
of the analysed algorithms. For the systems with flexible bodies, 
total energy value was calculated as a sum of kinetic energy, 
potential energy of gravity forces and elastic energy (according 
to formula (20)). 

Tab. 2 summarises simulation results obtained for the first, 
stiffer pendulum model. The tests carried out with the use of the 
Radau algorithms ended ahead of time in each case, because of 
too small integration step applied by the procedure. The results 
obtained by using the DASSL algorithm are printed in italics, 
because duration of all simulations performed with this algorithm 
exceeded the maximum allowable computation time equal to 10 
hours. In such cases, the value in the “computation time” column 
means the time of calculation end reached after 10 hours of com-
putations. We managed to obtain correct results only when using 
the algorithms GAMD and HHT-I3.  

None of the algorithms gave satisfactory results for the high-
est tolerance values (test I). The results obtained with the use 
of the GAMD algorithm indicated that the oscillations were com-
pletely damped, while those produced by the HHT-I3 were 
at variance with the physical sense of the problem. Simulation 
results obtained for lower tolerance values were fully acceptable, 
and their accuracy increased with decreasing tolerance values. 
The algorithm HHT-I3 proved much more effective than the 
GAMD (despite the fact that its implementation was not optimal) 
for medium and low tolerance values. In the case of the highest 
tolerances (test I), the computations performed with the use of this 
algorithm took a much longer time, which was due to the fact that 
the computed results were erroneous (oscillations of increasing 
amplitude). 

Tab. 2. Results of simulation of flexible physical pendulum (3 = 2 × 10��Pa) 

Tolerance Algorithm Total energy [J] Amplitude decay [%] Period elongation [%] Computation time 

Test I: 

Atol 10�. 

Rtol 10�( 

DASSL 0.01 0.32 0.18 sim. to 30.3s 

Rasau5 - - - sim. to 0.6s 

Radau - - - sim. to 1s 

GAMD -4.90 100 -15.5 18m 19s 

HHT-I3 138.4 -102 98.9 1h 16m 28s 

Test II: 

Atol 10�/ 

Rtol 10�- 

DASSL -0.001 0.06 0.09 sim. to 75s 

Rasau5 - - - sim. to 8.7s 

Radau - - - sim. to 2.3s 

GAMD 0.07 -1.36 0.32 1h 25m 57s 

HHT-I3 -0.02 0.44 -0.09 17m 38s 

Test III: 

Atol 10�� 

Rtol 10�/ 

DASSL 5x10-6 -0.02 0.12 sim. to 83.3s 

Rasau5 - - - sim. to 16.0s 

Radau - - - sim. to 16.4s 

GAMD 0.07 0.02 -0.008 2h 47m 20s 

HHT-I3 -0.002 0.04 -0.02 1h 03m 44s 
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Tab. 3. Results of simulation of flexible physical pendulum  
 (3 = 2 × 10/Pa) 

Tolerance Algorithm Total energy [J] Computation time 

Test I: 

Atol 10�. 

Rtol 10�( 

DASSL 0.007 2h 57m 04s 

Rasau5 1.27 17m 02s 

Radau 3.67 27m 45s 

GAMD 0.07 11m 31s 

HHT-I3 2.46 3m 54s 

Test II: 

Atol 10�/ 

Rtol 10�- 

DASSL 0.007 42m 48s 

Rasau5 0.07 13m 38s 

Radau 0.09 28m 51s 

GAMD 0.07 14m 50s 

HHT-I3 -0.25 11m 36s 

Test III: 

Atol 10�� 

Rtol 10�/ 

DASSL 0.007 43m 08s 

Rasau5 0.07 28m 34s 

Radau 0.08 28m 44s 

GAMD 0.07 1h 00m 48s 

HHT-I3 0.007 1h 14m 44s 

In Tab. 3, there are shown results of simulation of the pendu-
lum which can be subject to significant deformations because 
of low value of Young’s modulus. In the case of this model, it was 
possible to obtain some results for all algorithms and all tolerance 
values. In the case of test I, acceptable results were obtained only 
when using the algorithms DASSL and GAMD. The results ob-
tained with the use of the remaining methods significantly differ 
from the nominal values. However, for lower tolerance values, all 
the results can be treated as acceptable. With the exception of the 
algorithm HHT-I3, all other algorithms gave results which did not 
differ much from one another when one assumed medium or low 
tolerance values. 

Calculation time in the carried-out simulations proved strongly 
dependent on the tolerance values. The lowest impact of toler-
ances on computation time was observed in the algorithms Radau 
and Radau5. The algorithms GAMD and HHT-I3 exhibited signifi-
cant increase in computation time with decreasing tolerance 
value. In the case of algorithm DASSL, all the simulations lasted 
relatively long, and computations time needed in test I was much 
longer than that in tests II and III. 

For this model, application of the algorithms GAMD and HHT-
I3 gave correct results in a shortest time (for all tolerance values). 
However, for the lowest tolerance values, the algorithms Radau 
and Radau5 proved much more effective. 

5. SUMMARY AND CONCLUSION 

The results presented in this paper have shown significant dif-
ferences in effectiveness of algorithms used for solving differen-
tial-algebraic equations in application to multibody systems. Cor-
rect results were obtained for all analysed models only when 
applying the algorithms GAMD and HHT-I3. The algorithms 
Radau and Radau5 were not able to solve the system of a flexible 
pendulum of high stiffness, and the calculations performed for this 
system with the use of the DASSL algorithm lasted unacceptably 
long. 

Considering the time of computation, one could conclude that 
the algorithm HHT-I3 was the most effective one in the cases 
of simulations where tolerance values were medium or high. 

In this respect, the characteristics of algorithm GAMD were simi-
lar. The algorithm DASSL proved very effective in the analysis 
of pendulum modelled with the use of a rigid body, while in the 
analysis of the flexible pendulum this algorithm turned out to be 
the slowest one. Nevertheless, the results obtained with the use 
of this algorithm were often the most accurate ones. The algo-
rithms Radau and Radau5 did not differ much, neither in accuracy 
of computations, nor in effectiveness (in some simulations, how-
ever, the algorithm Radau5 was much faster). These algorithm 
proved to be effective in cases of low tolerance values. 

On the basis of the presented results we can state that, 
for solving a multibody system, one should apply, in the first place, 
the algorithms GAMD or HHT-I3. If it turns out that these algo-
rithms have too low effectiveness, one can try to apply the algo-
rithm Radau5, which in some cases may give a higher effective-
ness. The algorithm Radau is based on the same method 
of solving DAEs as the algorithm Radau5. However, we have not 
notice any substantial advantages of using this algorithm in com-
parison to the algorithm Radau5. Unlike the previous ones, the 
algorithm DASSL turns out to be a good one only in the cases 
of systems with low number of degrees of freedom, for example 
when analysing a rigid body. In the analysis of flexible systems, 
this algorithm was usually the slowest one. 

It should be emphasised that this publication does not fully 
exhaust the presented topic. The works are carried out, aimed 
at complementing the results with the analyses of more complex 
examples. The algorithms have been tested, so far, only on rela-
tively simple models; neither have we taken into account such 
properties of integrating procedures as, e.g., the ability of solving 
equations with inconsistent initial conditions. The mentioned 
problems are beyond the scope of this publication and need fur-
ther analyses. 
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