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Abstract: The paper presents a proposal of account of mean stress value in the process of the determination of the fatigue life, using 
the spectral method. The existing approaches have been described and some chosen stress models used to take into account the influ-
ence of the mean value in the process of the determination of fatigue life have been introduced. Those models, referring to their linear 
character, have been used to determine the power spectral density function (PSD) of the transformed stress taking into account the mean 
value. The method introduced by the authors allows a wide usage of many formulas used to predict the fatigue life by means of the spec-
tral method.  
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1. INTRODUCTION 

Structures and machine components being subjected to vari-
able loads require constant monitoring during operation due to the 
emerging phenomenon of material fatigue. Also, when designing 
new constructions or modification of nodes of machine elements, 
it is required to check their load capacity and fatigue life before 
finally being put into operation. The verifications of this type are 
performed in laboratories carrying out the strength of materials 
fatigue tests, or if it is not possible because of e.g. the size 
and cost, then calculations are made only with a view to the best 
possible estimate of fatigue life. The way of calculations depends 
of the character of the load. In the case of load-amplitude with 
no mean value, the expected number of cycles to fatigue crack 
initiation can be read directly from graphs of fatigue, for example, 
Wöhler curve. If there are evident mean values in the course, then 
their effect must be taken into account on fatigue. For this purpose 
you can use the charts to take account of the influence of the 
mean load, for example, Smith chart or Wöhler graphs drawn up 

for various cycle asymmetry coefficients R = σmin/σmax.  

2. MEAN VALUE OF RANDOM LOADING 

The assignation of fatigue under variable amplitude or random 
load is generally done in the time domain using an algorithm 
determining the course of the cycles of variable amplitude, using 
a chosen model to circumscribe the impact of the mean load 
and the hypothesis of summation of fatigue damage. The papers 
by Łagoda et al., (1998, 2001) present the results of fatigue tests 
under uniaxial random tension-compression with the mean value 
of samples made of steel 10HNAP. They proposed an algorithm 
for calculating the fatigue life using the rain flow cycle counting 
method and the hypothesis of summation of fatigue damage by 
Palmgren-Miner. The authors of this work have analyzed three 
paths to take into account the influence of the mean value, that 
are:  

− I – not taking into calculations the mean value, 

− II – taking into calculations the influence of the mean value 
by transforming each of the cycle amplitude on the basis 
of their local mean value determined while cycle counting,  

− III – taking into calculations the influence of the mean value 
by transforming the whole load course on the basis of its 
global mean value.  
Fig. 1 shows an diagram of the algorithm of the calculation 

of fatigue life taking into calculations the mean stress value. In this 
work the K coefficient has been introduced, which allows you to 
calculate the transformed amplitude according to the method II: 

),( miiaiaTi K σσσ ⋅=  (1) 

for the i-th cycle emphasised by the rain flow algorithm from 

a random course with amplitude σai  and the mean value σmi. 
Method III is based on the principle of the transformation of the 
entire random stress course using the global mean value: 

[ ] ).()()( mmT Ktt σσσσ ⋅−=  (2) 

Amplitude of the transformed cycle σaTi for this case 

is obtained directly by counting cycles of the course σT(t)  using 
the cycle counting algorithm. Summation of fatigue damage 
is done according to the formula: 
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where: D – fatigue damage parameter, ni – the number of cycles 

of amplitude σaTi, N(σaTi) – the number of cycles determined from 

the Wöhler diagram for the transformed amplitude σaTi. Fatigue 
life Ncal  expressed in cycles is determined from the formula: 

D

N
N blok
cal =  (4) 

where Nblok  is the number of distinguished cycles of the analyzed 
section of the stress course. 
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Fig. 1. Three paths to calculate the fatigue life Tcal (Łagoda et al., 2001) 

The study showed that the course of a stationary random and 
symmetrical distribution of values of the instantaneous probability 
methods II and III are equivalent and can be used interchangeably 
in the calculations. In special cases, the K coefficient is 
determined from the formulas derived on the basis of the adopted 
model to take account of the mean stress. In literature you will find 
a significant number of models of this type (Łagoda et al., 2001; 
Pawliczek, 2000; Böhm, 2010) for which the K coefficient takes 
the form: 
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where: Ks , KGo , KM , KGe , KK – coefficients determined on the 
basis of appropriate models of Soderberg, Goodman, Morrow, 

Gerber and Kwofie, σm – mean cycle value of the stress course, 
Re – plasticity limit, Rm – tensile strength, σ’f – fatigue strength 
coefficient, α – mean stress sensitivity of the material. 

Fatigue life can be assigned also in the frequency domain 
using a stochastic analysis of random processes, the so-called 

spectral method. Taking into account the mean stress in this case 
is hard because the stress in the course of this method 
is represented by a power spectral density function, which 
contains information about the occurring locally and globally mean 
value in a way that is difficult to use in practice. In literature, 
however, we can find only a few suggestions on this issue. Kihl 
and Sarkani (1999) show the effect of the mean value on fatigue 
life of welded steel joints. The tests were set to be run under both 
cyclic and random loadings with non-zero and zero mean stress 
value. The authors derived a formula to find the expected number 
of cycles to initiation of fatigue cracks in the case of random loads 
with extremes of Rayleigh distribution with a nonzero mean value 
of stress: 
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where: Ncal – number of cycles to fatigue crack initiation, A and 
B – life axis and slope of the constant amplitude Wöhler curve, 

σx – is the RMS stress of the narrowband random loading, Γ(⋅) – is 
the gamma function, σm – global mean stress value of the random 
stress history, Rm – tensile strength. It is easy to notice that in the 
formula (10), the part being responsible for taking into account  

the mean value is (1 – σm/Rm)–B, which modifies the cycle number 
till the initiation of the fatigue crack determined by the Miles 
formula (Niesłony and Macha, 2007). 

3. PSD OF A RANDOM FUNCTION WITH THE MEAN VALUE  

Let us analyse an example of one-dimensional stationary 
random process x(t) showing the characteristics of ergodicity. The 
assumption that x(t) represents the physical signal is often 
convenient to present as the sum of the static xm and dynamic 
xd(t) or fluctuant component: 
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Static component can be described by the mean value given 
by the formula: 
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and the dynamic component by the signals variance: 
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The variance, however, does not describe the spectral 
structure of a random process, and this information is essential for 
the proper estimation of the number of cycles and the amplitude 
distribution of the load during the fatigue calculations. Therefore 
for this purpose the power spectral density (PSD) function is being 
used. Power spectral density of the signal describes the overall 
structure of a random process using the frequency spectral 
density of mean values of the physical signal in question. This 
value can be determined for the interval from f to f + ∆f using 
a central-pass filter with a narrow band and averaging the square 
on the output of the filter (Bendat and Piersol, 1976): 
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where: Ψx – the mean square value of the process x(t), T – time 
of observation, x(t, f, ∆f) – component of x(t) in the frequency 
range from f to f + ∆f. For small values of ∆f the formula (14) 
shows the one-sided PSD function. 
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A characteristic property of the Gx(f) function is the relation to 
the autocorrelation function. In particular, for stationary signals, 
these functions are closely related by the Fourier transformation: 
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is the autocorrelation function of the signal x(t). Mean value xm 
of the random process can be determined from the autocorrelation 
function: 

,)(∞= xm Rx  (18) 

and the mean value of x(t) is a function of the PSD presented 
as a Dirac function at zero frequency 
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The formula (19) shows that the mean value is equal to the 
positive square root of the "surface" underlying the Dirac function. 

This is an abstract space, as Dirac function takes the value +∞ for 
an infinite small interval. For this reason, the direct use of formula 
(19) to determine the mean value on the basis of a PSD function 
of a random function is virtually impossible. Numerical algorithms 
to estimate the PSD functions are limited to the basic frequency 
resolution and the value of the function Rx(0) results from the 
mean value x(t) and from the mean square value of a random 

process from the interval (0, ∆ f). Proper separation of these two 
values is impossible without additional information such as of the 
static value. Therefore, in practice, we analyze those two values 
separately, the dynamic and static component of the random 
process according to equation (11). 

4. PSD FUNCTION OF A TRANSFORMED STRESS COURSE 

The crossing of the signal x(t) by a linear system with constant 

parameters determined by the impulse response h(τ) and the 
transfer function H(f) describes the following relationships (Bendat 
and Piersol, 1976, 1980; Kirsten, 2002): 
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where: y(t) – output signal of the system, Gx(f) and Gy(f) – 
respectively PSD input and output. From the equation (21) we can 
notice that the power spectral density of the output signal can be 

calculated knowing the gain factor |H(f)| of the system. Fig. 2(a) 
shows schematically the signal pass through a linear system. 
The spectral method of determining the fatigue life using the PSD 
function is used to describe the course of stress directly in the 
frequency domain. If the stress course includes a static and 
a fluctuant component then the transformed course should be 
designated according to equation (2). Treating the fluctuant 

component of the course [σ(t) − σm] as an input signal of an linear 

system with constant coefficient of strengthening |H(f)| = K(σm) we 
can determine the PSD of a transformed strain course: 

),()()( 2 fGKfG mT σσ σ=  (22) 

where Gσ( f ) are the power spectral density of a centered stress 
course. Fig. 2(b) presents the interpretation of the linear process 
of strain transformation due to the mean value, which can be 
compared to the transition signal by a linear system, Fig. 2(a). 

Formula (22) allows the use of different forms of K(σm)-factor, 
for example, described by equations (5)-(9), in the process 
of determining the fatigue life by means of spectral method taking 
into account the static stress component. The main advantage 
of the proposed solution is that the transformation is subjected 
to power spectral density function before using the models 
to determine the fatigue life. This gives the possibility of applying 
fatigue formulas in the spectral method for the waveforms 
developed for narrow-band frequency and the more universal 
solutions correctly describing most of the random waveforms used 
in the calculation of fatigue (Niesłony and Macha, 2007; Niesłony, 
2003, 2008). 
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Fig. 2.  Single entry linear system (a) and interpretation of the linear 
             process of transformation strain due to the average value (b) 

Such a method is proposed by Dirlik (1985) which 
is developed by using the empirical formula describing 
the probability distribution of amplitudes ranges. 
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where: Z, K1, K2, K3, K4, R – factors which are functions of the first 
five moments mk (k = 0, …, 4) of the transformed PSD stress 
function: 
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Fatigue life is calculated using the selected hypotheses 
of fatigue damage accumulation, e.g. for a linear Palmgren-Miner 
hypothesis with the amplitude below the fatigue limit we obtain: 
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where the number of cycles for a range of amplitudes is calculated 
on the basis of the characteristics of the material fatigue: 
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5. CALCULATION ALGORITHM 

In order to calculate the fatigue life using the spectral method 
and taking into account the impact of the mean stress on fatigue 
life you should follow these steps: 
a) Assigne or define the PSD of the fluctuant component  

of the stress course Gσ(f) and its static part σm, 

b) Calculate the coefficient K(σm) according to the right model, 
formulas (5)-(9), and the choice of model depends  
of the mean stress value sensitivity of material, 

c) Calculate PSD of then transformed stress GσT(f) according 
to the equation (22), 

d) Calculate the fatigue life using spectral method formulas i.e. 
(23) and (25) (Niesłony A. and Macha E., 2007). 

6. CONCLUSIONS AND OBSERVATIONS 

Based on the literature research it can be noticed, that there 
are no papers that would propose the transformation of the power 
spectral density function of the stress, to take into account the 
influence of the mean value on the fatigue life. The proposed 
formula (21) allows the calculation of the PSD of the transformed 
stress, using models that are well known and widely verified 
in experimental researches. The proposal of Kihl and Sarkani 
(1999) uses a Rayleigh amplitude distribution approximation, 
which reduces the area of application of the formula (9) only 
to narrowband processes. The method introduced by the authors 
doesn’t have this limitation and therefore allows a wide usage 
of many formulas used to predict the fatigue life by means of the 
spectral method. Compared with the time domain fatigue life 
prediction methods, the spectral method shows greater efficiency 
and it can be used there, where a multiplicand fatigue calculation 
is required (constructions optimization, fatigue damage maps 
etc.). The experimental verification should be performed to verify 
the correctness of the fatigue calculations evaluated according 
to the proposed method, nevertheless the transformation of the 
PSD function in the spectral method is equivalent to the formula 
(2) in the time domain.  
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