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Abstract: This paper presents a simple procedure that can be used to determine the stiffness matrix of 6R serial manipulator in selected 
points of the work space with joint stiffness coefficients taking into account. Elastokinematical model for the robot manipulator FANUC  
S-420F was considered as spatial and serial kinematical chain composed of six rigid links, connected by ideal revolute joint (without clear-
ances and deformable elements), with torsion elasticity of the joint drive system (relative torsion deformations are proportional to acted tor-
ques) taking into account. Assumed model is used for displacement analysis of the end-effector for a given applied force in quasi-static 
condition. The analysis results are presented as Cartesian stiffness matrix of studied manipulator. 
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1. INTRODUCTION 

Serial robots are mainly used in industry for the tasks required 
good repeatability but not necessarily high accuracy of the end-
effector pose in workspace (position and orientation according 
to ISO9283). For example, these robots are used for pick-and-
place, painting and welding operations. Nevertheless, many serial 
robots are now used for machining operations that require high 
precision and stiffness. 

 

Fig. 1. Industrial Robot FANUC S-420F (Kim and Treit, 1995)         

 

Fig. 2. Kinematical model of manipulator 6R FANUC S-420F 

Elastokinematical models of serial manipulators are used 
for stiffness analysis and presented in: Dumas et al. (2011), Góra 
and Trela (2011a, b), Kim and Treit (1995) and Morecki et al. 
(1995); however, the identification of stiffness parameters has yet 
to be determined. Two methods were used to obtain the Cartesian 
stiffness matrix of serial manipulator. The first method consists 
of clamping all of the joints except one to measure its elastic 
deflection under applied load. The joint stiffness matrix of manipu-
lator is obtained by repeating the procedure for each revolute 
joint. Therefore, only six experiments are required with this meth-
od to evaluate stiffness matrix of the 6R manipulator throughout 
its workspace. The second method measures the displacements 
of the end-effector due to certain applied loads and evaluates the 
stiffness matrix throughout its workspace with some interpolations. 
This method gives better results than the first when many tests 
are performed under different manipulator configurations. 

This paper presents the Cartesian stiffness matrix analysis 
of the 6R robot FANUC S-420F (see Figs. 1 i 2). 

2.  STIFFNESS MATRIX FORMULATION 

Kinematical model of  6R robot manipulator (FANUC S-420F) 
is considered as serial kinematical chain with six revolute joints 
(Fig.2). Denavit-Hartenberg (D-H) parameters are given in Tab. 1.  

The (6×6) Jacobian matrix of the manipulator is: 

� = ������� 		��
��� 		������� 		������ 		��
��� 		������ 
�	    (1) 

where: �� , �� , ��	– point coordinates of the end-effector; φ�, φ�, φ� – angular coordinates of the end-effector with respect to the 
base frame axes, θ� – angular coordinate of the revolute joint i  
(i = 1, 2, ...6). 

The links of the robot are assumed as rigid bodies,  and the 
joint stiffness (with control loop stiffness and actuators mechanical 
stiffness taking into account) is represented with linear torsion 
spring. In the case of small elastic deformation the following rela-
tion can be written (Dumas et al., 2011; Kim and Treit, 1995; Tsai, 
1999): 



acta mechanica et automatica, vol.6 no.2 (2012) 

63 

�� = ��∆��         (2) 

where:	�� – torque applied on the joint  , ∆�� – torsion defor-
mation, �� –   -th joint stiffness value . 

Assuming that frictional forces at the joints are negligible and 
neglecting the gravitational effect we can apply the principle 
of virtual work to derive a transformation between the joint torques 
and end-effector forces: ! = ��"          (3) 

where: ! = [�$ … �&]�, " = [(�	(�	(�	)�	)�	)�]�, " – vector of the end-effector output force and moment (the com-
ponents are described with respect to the base frame);  ∆* – displacement of the end-effector (in Cartesian coordinates) 
as proportional to the quasi-static output load: ∆* = +" = ,-$"       (4) 

where:	∆* = [∆�� 	∆��	∆	��	∆.� 	∆.�	∆	.�]� 

, = �-�(,� − ,1)�-$       (5) 

,� = 3 45[�$�6 …	�&] 
,1 = ���7���
 !     ( = 1, 2, … 6) 

(6) 

+	(6x6) – compliance matrix, ,	(6x6) – stiffness matrix 

of manipulator, ,� – diagonal joint stiffness matrix, � – kinemati-

cal Jacobian matrix, ,1  – complementary stiffness matrix. Ac-
cording to (5) stiffness matrix of manipulator depends on both 

constant matrix ,� and variable matrix ,1 , depended on posi-
tion. It make sense that joint stiffness identification is easier when ,1 	is negligible with respect to ,�. From equations (4) and (5) 
it can be derived: ∆* ≅ �,�-$��"        (7) 

Let the joint compliances be the components of the six-
dimensional vector: = = [>�]� = [1/��]�	  ( = 1, 2, … 6)     (8) 

The 6-dimensional vector (7) describing small displacement 
of the end-effector can be expressed as: ∆* = @=          (9) 

where: 

 @ = AB$$ ∑ B�$D�&�E$ … B$& ∑ B�&D�&�E$… … …B&$ ∑ B�$D�&�E$ … B&& ∑ B�&D�&�E$
F           (10) 

Therefore, " – vector of load , ∆* – vector of displacement 

and matrix @ are associated with each test in determined position 

and load case. When only one test is considered, then matrix @ 

is (6x6). If it is nonsingular, then equation (9) has a unique solu-
tion (Dumas et al., 2011):  = = @-$∆*                 (11) 

When several tests are considered, the equation system (9) 
becomes over-determined. Assuming that n tests are taken into 

account, matrix @ becomes (6Gx6), no longer square matrix, and 

the joint compliance vector = cannot be calculated using (11), 
because the number of equations is higher than the number 

of unknowns. In this case it is possible to find a vector = that 
minimizes the Euclidean norm of the approximation error of the 

system. From equation system (9) it is apparent that the higher 
the number of tests gives the higher the degree of constraint 
of the equation system, and the more accurate solution, i.e., the 
more accurate evaluation of the joint stiffness values. Obviously, 
the higher number of tests is connected with the more expensive 
identification procedure. Therefore, it is suggested to find com-
promise between identification accuracy and cost, for example 
five tests are a good compromise. 

It is possible to identify the stiffness values of the first three 
joints of a six-revolute manipulator by measuring only the transla-
tional displacements of its end-effector loaded by force.  

2.1.  Numerical example 

Problem is to determine the stiffness matrix of manipulator 
Fanuc S-420F, with only torsion flexibility in the first three joints 
taking into account. For a given vertical force applied on the end-
effector its linear displacements are measured. The robot with the 
end-effector loaded be gravity force is shown in Fig. 3. The meas-
urement results are presented as compliance characteristics 
on Fig. 4.  

The D-H parameters of the considered manipulator are given 
in Tab. 1. The first three elements of the compliance matrix, that 
influenced on the linear displacement of the end-effector, 
are presented in Apendix A.  

Tab. 1. D-H parameters of manipulator Fanuc S-420F H IJ[°] HJ[!!] LJ[!!] MJ[°] 
1 90 270 0 ±150 

2 0 900 0 ±57,5 

3 90 270 0 ±72,5 

4 -90 0 1300 ±360 

5 90 0 0 ±125 

6 0 0 260 ±360 

 
Fig. 3.  Robot manipulator Fanuc S-420F with the end-effector  
             loaded by vertical force Q 
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Fig. 4. Compliance characteristics (s – vertical displacement of the end- 
            effector of robot Fanuc S-420F with respect to Q – vertical force),  
            determined on the basis of stand measurement results 

A comparison between joint stiffness data as given in Kim and 
Treit (2011) for robot PUMA 560: k1=66.230; k2=66.50; k3=11.610; 
k4=0.202; k5=0.101; k6=0.144 [kNm/rad]; given in Dumas et al. 
(2011) for robot Kuka KR240-2: k1=1.410; k2=0.401; k3=0.935; 
k4=0.360; k5=0.370; k6=0.380 [kNm/rad]. 

Measurements of Cartesian coordinates of the end-effector 
loaded by vertical force are as follows: �� = 279.85; 	�� = 2751.95; �� = 145.14	[mm]; .� = 89.34; 	.� = 46.57; .� = 0.73	[°]. 

By solving the inverse kinematical problem the respective joint 
coordinates are obtained: �� = −84.91°; 	65.00°; 	−12.31°; 		0.00°; 		9.64°; 		0.00° 

Assuming that joint stiffness coefficients of the considered 
manipulator Fanuc S-420F are the same as given values 

for manipulator  PUMA 560 and using formulae (A3) for the (3x3) 
element of the stiffness and compliance matrix were calculated YZZ = 0.00183	[mm/N]; �ZZ = 546.6	[mm/N]. Respective 
values of this element determined on the basis of measurements 

made for manipulator Fanuc S-420F  are: YZZ = 0.0059	[mm/

N]; �ZZ = 169.5	[mm/N]. 
Suggestions for explaining this difference include varia-

tions between assumed and real values of joint stiffness coeffi-
cients. It can be concluded that stiffness coefficients of the first 
three joints of manipulator Fanuc S-420F are about three times 
greater than the respective given for manipulator PUMA 560. 

 3. CONCLUSION 

The subject of this paper was to describe a method for stiff-
ness analysis of serial manipulator. Elastokinematical model 
of the considered manipulator was assumed with the links as rigid 
bodies, and with the linear torsion springs in revolute joints (with 
control loop stiffness and actuators mechanical stiffness taking 
into account). Numerical example for the stiffness matrix of ma-
nipulator Fanuc S-420F is given. Cartesian stiffness matrix ob-
tained by using presented method can be applied for planning the 
Cartesian trajectory of the end-effector with its load taken in-
to account, for example tool path planning considering robot 
performance indices.  
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APPENDIX: DIAGONAL ELEMENTS  OF COMPLIANCE  MATRIX C (4) FOR MANIPULATOR FANUC S-420F  
(D-H parameters are given in Tab.1) 

( ) ( )( )( )[ ]

( )( )[ ]

( )( )[ ]

( )
( )( )

( )( ) ( )( )( )[ ]2523154142314235235423414231

2

6

5

2

52315414231423123

52354234232312

6

4

2

65235423423233

2

1

3

2

6523542342323322

2

1

2

2

5231541423164232332211

1

11

1

1

1

1

1

csssscccsssccscsccscs

csssscccsssc

ccscscss

ccscscslc

ccscscclslc

csssscccssclcllsc

+−+−−−+

+




















+−++

+−+−
+

+−+−+

+−+−++

++−−+++−=

λ
κ

λ

λ
λ

κ

λλ
κ

λλ
κ

λλ
κ

   (A.1) 



acta mechanica et automatica, vol.6 no.2 (2012) 

65 

( ) ( )( )[ ]( )

( )( )[ ]

( )( )[ ]

( )( )
( )

( )( ) ( )( )( )[ ]2523542341423152315414231423

2

6

5

2

5235423423231

523154142314231232

6

4

2

65235423423233

2

1

3

2

6523542342323322

2

1

2

2

5231541423164232332211

1

22

1

1

1

1

1

ccscscsscccscssscccss

ccscscsc

cscssscccscc

ccscscsls

ccscscslsls

cssssccccsclcllcc

−−+++−+

+




















−+−−

−+++−
+

+−+−+

+−+−++

+++++++=

λ
κ

λ

λ
λ

κ

λλ
κ

λλ
κ

λλ
κ

   (A.2) 

( ) ( )( )( )([

( ) ( )( )( )
( )( )

( ) ( )( )(( )[

( ) ( )( )( )) ]
( )( )(([

( )( )( )) ]
( ) ( )( )([

( ) ( )( )) ]252315414231414231

52315414231414231

2

6

5

2

6523154142314231231

5231541423164231231

4

2

65231541423142323311

52315414231642323311

3

2

65235423

6523154142314232332211

52315414231642323322111

2

33

1

1

1

1

cscssscccccscs

csssscccscsscc

cssssscccscss

csssscccssssc

cscssccccsclcc

csssscccssclss

ccscs

cscssscccsclslcc

csssscccssclcllssc

++++

++−+−+

++++−

−+−++

+−+++

++−+++

+










−+

++++++

++−++++=

λ
κ

λλ

λλ
κ

λλ

λλ
κ

λ

λλ

λλ
κ

             (A.3) 

 

where )sin(),cos(,sin,cos jiijsjiijciisiic θθθθθθ +=+===  

 


