PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Limitation of Cauchy Function Method in Analysis of Estimators of Frequency and Form of Natural Vibrations of Circular Plate with Variable Thickness and Clamped Edges

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the Berstein-Kieropian double estimators of basic natural frequency of circular plate with power variable thickness along the radius and clamped edges in diaphragm form were analyzed in a theoretical approach. The approximate solution of boundary problem of transversal vibration by means of Cauchy function and characteristic series method has been applied for chosen values of power indicator of variable thickness and material Poisson’s ratio has been chosen which led to exact form solutions. Particular attention has been given to a singularity arising from the uncertainty of estimates of Bernstein-Kieropian. Improving this method has been obtained the general form of Cauchy function for arbitrary values of and , which are physically justified. Therefore, the aim of the paper was to explore the reason why for a plate above a certain value = 3.97 exact solution, which Conway couldn’t receive (Conway, 1958a, b)
Rocznik
Strony
53--57
Opis fizyczny
Bibliogr. 14 poz., Rys.
Twórcy
autor
  • Faculty of Management, Bialystok University of Technology, ul. Ojca Tarasiuk 2, 16-001 Kleosin, Poland, j.jaroszewicz@pb.edu.pl
Bibliografia
  • 1. Bernstein S.A., Kieropian K.K. (1960), Opredelenije častot kolebanij steržnevych system metodom spektralnoi funkcii, Gosstroiizdat, Moskva.
  • 2. Chandrika P., Raj K.J., Som R.S. (1972), Axisymmetric Vibrations of Circular Plater of Linearny Varying Thickness, Journal of Applied Mathematics and Physics, Vol. 23, 941-948.
  • 3. Conway H.D. (1958a), Some special solutions for the flexural vibrations of discs of varying thickness, Ing. Arch., 26, 6, 408-410.
  • 4. Conway H.D. (1958b), An analogy between the flexural vibrations of a cone and a disc of linearly varying thickness, Z. Angew. Math. Mech.,37,9/10, 406-407.
  • 5. Hondkiewič W.S. (1964), Sobstviennyje kolebanija plastin i obolochek, Nukowa Dumka, Kiev.
  • 6. Jaroszewicz J, Zoryj L., Katunin A. (2004), Double estimators of natural frequencies of axial symmetrical vibrations of circular plates of varying thickness, International Conference Energy in Sciences and Technics, Suwałki, 45-56.
  • 7. Jaroszewicz J., Misiukiewicz M., Puchalski W. (2008), Limitations in application of basic frequency simplest lower estimators in investigation of natural vibrations circular plates with variable thickness and clamped edges, Journal of Theoretical and Applied Mechanics, Vol. 46, nr 1, 109-121.
  • 8. Jaroszewicz J., Zoryj L. (2000), Investigation of the effect of axial loads on the transverse vibrations of a vertical cantilever with variables parameters, International Applied Mechanics, Volume 36, Number 9, 1242-1251.
  • 9. Jaroszewicz J., Zoryj L. (2005), Methods of analysis natural vibration of axi-symmetrical plates using Cauchy function, Białystok.
  • 10. Jaroszewicz J., Zoryj L. (2006), The method of partial discretization in free vibration problems of circular plates with variable distribution of parameters, International Applied Mechanics, 42, 3, 364-373.
  • 11. Jaroszewicz J., Zoryj L., Katunin A. (2006), Influence of additional mass rings on frequencies of axi-symmetrical vibrations of linear variable thickness clamped circular plates, Journal of Theoretical and Applied Mechanics, 44, 4, 867-880.
  • 12. Kovalenko A.D. (1959), Kruglyje plastiny peremenntoj tolshchiny, Gosudarstvennoje Izdanie Fiziko-Matematicheskoj Literatury, Moskva.
  • 13. Vasylenko N.V., Oleksiejčuk O.M. (2004), Teoriya kolyvań i stijkosti ruchu, Vyshcha Shkola, Kiev.
  • 14. Woźniak C. (2001), Mechanics of elasticity plates and shells, Polish Academy of Sciences, PWN, Warsaw.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0068-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.