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Abstract: In the paper, numerical verification and catalogue of the numerical solutions based on Modify Boundary Layer Approach to de-
termine the relationship between Q-stress and T-stress are presented. Based on the method proposed by Larsson and Carlsson,  
the Q-stress value are calculated for some elastic-plastic materials for different value of T-stress and external load expressed by J-integral. 
The influence of the external load, T-stress value and material properties on Q-stress value were tested. Such catalogue may be useful 
during solving the engineering problems, especially while is needed to determine real fracture toughness with including the geometric con-
straints, what was proposed in FITNET procedures.  
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1. DESCRIPTION OF THE STRESS FIELD NEAR CRACK TIP 
– THEORETICAL BACKGROUNDS 

For mode I of loading, stress field ahead of a crack tip in elas-
tic linear isotropic material can be given by (Williams, 1957): 
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   for plane strain, 

where σij is the stress tensor, r and θ are as defined in Fig. 1,  

ν  is Poisson’s ratio, KI is the Stress Intensity Factor (SIF).  

 
 Fig. 1. Definition of the coordinate axis ahead of a crack tip 
            The z direction is normal to the page  
            (own Fig. based on (Williams, 1957)  

The SIF defines the amplitude of the crack tip singularity. That 
is, stresses near the crack tip increase in proportion to K. Moreo-
ver, the stress intensity factor completely defines the crack tip 
conditions; if K is known, it is possible to solve for all components 

of stress, strain, and displacement as a function of r and θ.  
This single-parameter description of crack tip conditions turns 

out to be one of the most important concepts in fracture mechan-
ics (Williams, 1957). 

In 1968, Hutchinson (1968) and Rice and Rosengren (1968) 
derived the singular stress-strain fields at a crack tip in a power-
law hardening material (which called the HRR-field). The 
hardening law used by Hutchinson and Rice and Rosengren is 
given by:  
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where σ0 is a reference stress value that is usually equal to the 

yield strength, ε0= σ0/E, α is a dimensionless constant, and n 
is the strain hardening exponent. 

Assuming the Ramberg-Osgood material, the results obtained 
by Hutchinson and Rice and Rosengren for plane strain and for 
plane stress may be expressed in the following form: 
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where J is the J-integral, In is an integration constant that depends 

on n, ����(�, �) and 
�̃�(�, �) are dimensionless functions of n 

and �. These parameters also depend on the stress state (i.e. 
plane stress or plane strain). All this function may be determined 
using the algorithm and computer program presented by Gałkie-
wicz and Graba (2006). 
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The J-integral defines the amplitude of the HRR singularity, 
just as the stress intensity factor characterizes the amplitude 
of the linear elastic singularity. Thus, J-integral completely de-
scribes the conditions within the plastic zone. A structure in small-
scale yielding has two singularity-dominated zones: one in the 

elastic region, where stress varies as 1/√�  and one in the plastic 

zone where stress varies as (1/�)�/(���). The latter often per-
sists long after the linear elastic singularity zone has been de-
stroyed by crack tip plasticity. 

The HRR singularity contains the same apparent anomaly as 
the linear elastic fracture mechanics singularity; namely, both 
predict infinite stresses as r�0. The singular field does not persist 
all the way to the crack tip, however. The large strains at the crack 
tip cause the crack to blunt, which reduces the stress triaxiality 

locally. The blunted crack tip is a free surface; thus σxx must 
vanish at r = 0. 

The analysis that leads to the HRR singularity doesn’t 
consider the effect of the blunted crack tip on the stress fields, nor 
does it take account of the large strains that are present near the 
crack tip. This analysis is based on small strain theory, which is 
the multi-axial equivalent of engineering strain in a tensile test. 
Small strain theory breaks down when strains are greater than 
about 10%. 

 
 Fig. 2. The stress distribution near a crack tip (curves were obtained  
             using the FEM for small and finite strain and HRR formula) 

McMeeking and Parks (1979) performed crack tip finite 
element analyses that  incorporated large strain theory and finite 
geometry changes. Some of their results are shown in Fig. 2, 
which is a plot of stress normal to the crack plane versus distance. 
The HRR singularity is also shown on this plot. Note that both 
axes are dimensionless in such a way that both curves are 
invariant, as long as the plastic zone is small compared to 
specimen dimensions. The solid curve in Fig. 2 reaches a peak 

when the ratio x⋅σ0/J is approximately unity, and decreases as 
x�0. This distance corresponds approximately to twice the Crack 
Tip Opening Displacement (CTOD). The HRR singularity is invalid 
within this region, where the stresses are influenced by large 
strains and crack blunting. 

Presented above solutions for stress (Eq. (1) for linear fracture 
mechanics and Eq. (3) for nonlinear fracture mechanics) only 
describe the near tip field and consider only the first term of Taylor 
expansion. In the linear case, the second term in the Taylor 
expansion corresponds to the so called T-stress which acts in the 

direction parallel to the crack advance direction. The mode 
I stress field becomes: 
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here T is a uniform stress in the x direction (which induces 

a stress νT in the z direction in plane strain). 

 
Fig. 3. Modified boundary layer analysis. The first two terms  
           of the Williams series are applied as boundary conditions  
           (own Fig. based on Anderson, (1995)) 

The more common form of Eq. (9) is the following entry: 
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where δij is the Kronecker delta. 
We can assess the influence of the T stress by constructing 

a circular model that contains a crack, as illustrated in Fig. 3. 
On the boundary of this model, let us apply in-plane tractions that 
correspond to Eq. (5). A plastic zone develops at the crack tip, but 
its size must be small relative to the size of the model in order to 
ensure the validity of the boundary conditions, which are inferred 
from an elastic solution. This configuration, often referred 
to as a modified boundary layer analysis, simulates the near tip 
conditions in an arbitrary geometry, provided the plasticity is well 
contained within the body. 

Fig. 4 is a plot of finite element results from a modified 
boundary layer analysis (Neimitz et al., 2007) that show the effect 
of the T stress on stresses deep inside the plastic zone, obtained 
for large strain assumption. The special case of T=0 corresponds 
to the small-scale yielding limit, where the plastic zone is a 
negligible fraction of the crack length and size of the body, and the 
singular term uniquely defines the near-tip fields. The single-
parameter description is rigorously correct only for T=0. Note that 
negative T values cause a significant downward shift in the stress 
fields. Positive T values shift the stresses to above the small-scale 
yielding limit, but the effect is much less pronounced than it is for 
negative T stress.  

Note that the HRR solution does not match the T=0 case. 
The stresses deep inside the plastic zone can be represented by 
a power series, where the HRR solution is the leading term. Fig. 4 
indicates that the higher order plastic terms are not negligible 
when T=0. 
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Fig. 4. The stress distribution in front of the crack, computed  
            using modified boundary layer approach for constant SIF,  
            KI, and changing T-stress. Properties of material like in  
            the Sumpter and Forbes paper (Sumpter and Forbes, 1992) 

In a cracked body subject to Mode I loading, the T stress, like 
KI, scales with the applied load. The biaxiality ratio relates T to 
stress intensity: 

 

IK

aT π
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where a is the crack length. 
For a through-thickness crack in an infinite plate subject 

to a remote normal stress β = -1. Thus a remote stress induces 

a T stress of -σ in the x direction. 
In the nonlinear fracture mechanics, the Q factor was 

introduced by O’Dowd and Shih (1991, 1992) to account 
for difference between the HRR field and finite element results. 
The Q factor (also called Q-stress) corresponds to an additional 
hydrostatic pressure. The modified by O’Dowd and Shih stress 
field is obtained as: 
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where (σij)HRR is given by Eq. (3). 
For small scale yielding, Eq. (8) can be written in the following 

form: 
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The Q parameter can be inferred by subtracting the stress 
field for the T=0 reference state from the stress field of interest. 
O'Dowd and Shih and most subsequent researchers defined Q as 
follows: 
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Referring to Fig. 4, we see that Q is negative when T 
is negative. For the modified boundary layer solution, T and Q are 
uniquely related.  

Fig. 5 is a plot of Q versus T for a two work hardening 
exponents. A relation between Q and T stress, based 
on numerical calculations, using large strain theory and 
incremental strain plasticity is given by O’Dowd and Shih (1991) 
as: 
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where coefficients a0, a1, a2 and a3 were given only for two work 
hardening exponents: for n=5: a0=-0.10, a1=0.76, a2=-0.32,  
a3=-0.01 and for n=10: a0=-0.10; a1=0.76, a2=-0.52, a3=0. 
Proposed by Eq. (11) relationship is the result of the matching 
mathematical formula to numerical results.  

In 1995 O’Dowd (O’Dowd, 1995) was proposed, to describe 
the relationship between Q and T stress by linear formula, as 
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Fig. 5. Relationship between Q and T stress, based on Equations (11) 
            and (12) (based on O’Dowd and Shih (1991)) 

Fig. 5 shows graphically the mutual relationship between the 
Q and T stress, based on formulas (11) and (12). The use of both 
dependencies is relatively simple. In the case of formula (11) must 
know the values of the coefficients a0, a1, a2 and a3. Seems to be 
easier to use formula (12), because it is required only knowledge 
level of T stress, which for various geometries can be found in the 
literature (Sherry et al., 1991), (Leevers and Radon, 1983).  

When Equation (12) will be used in analysis of the real 
structural element, as can be observed, this formula did not take 
into account the geometry characterization, for example material 
properties, external load, kind of specimen. Formula (12), takes 
into account only crack length, because, T stress depend 
on relative crack length (Leevers and Radon, 1983).  

However, thanks to its simplicity, Equation (12) has found use 
in the solving engineering problems and it was recommended 
by FITNET procedures (FITNET, 2006). It should be noted that 
both Equations - (11) and (12) were based on analysis of small 
scale yielding, based on Modify Boundary Layer Approach 
(MBLA).  

It should be noted also that both Equations generally do not 
include external load, which in the case of plane strain strongly 
affects the Q stress level. 
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2. UTILIZATION OF THE CONSTRAINT PARAMETERS  
IN THE EVALUATION OF FRACTURE TOUGHNESS 

Both constraint parameters, the Q and T stress were found 
application in European Engineering Programs, like SINTAP 
(SINTAP, 1999) and FITNET (FITNET, 2006). The Q-stress  
or T-stress is applied under construction of the fracture criterion 
and to assessment the fracture toughness of the structural 

component. Real fracture toughness ����
� , may be evaluated 

using the formula proposed by Ainsworth and O’Dowd (1994). 
Ainsworth and O’Dowd have shown that the increase in fracture 
in both the brittle and ductile regimes may be represented by 
an expression of the form: 
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where Kmat is the fracture toughness for plane strain condition 

obtained using FITNET procedures, and β is the parameter 
calculated using following formula: 
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for elastic-plastic materials, 
  

 where Lr is the ratio of the actual external load P and the limit load 
P0 (or the reference stress), which may be calculated using 
FITNET procedures (FITNET, 2006).  

The constants α and k which are occurring in Eq. (13), are 
material and temperature dependent (Tab. 1). Sherry and et al., 
(2005a, b) proposed the designation procedures to calculate the 

constants α and k. Thus J-Q and K-T theories have practical 
application in engineering issues. 

Tab 1. Some values of the α and k parameters,  
            which are occurring in Eq. (13) (SINTAP, 1999; FITNET, 2006) 

material temperature fracture mode αααα k 

A533B (steel) -75°C cleavage 1.0 1.0 

A533B (steel) -90°C cleavage 1.1 1.0 

A533B (steel) -45°C cleavage 1.3 1.0 

Low Carbon Steel -50°C cleavage 1.3 2.0 

A515 (steel) +20°C cleavage 1.5 1.0 

ASTM 710 Grade A +20°C ductile 

0.0 1.0 

0.6 1.0 

1.0 2.0 

The reciprocal relationship between “in-plane constraint” pa-
rameters, for what can be considered the Q-stress and T-stress 
may be very useful in practical engineering problems, 
to determination of the real fracture toughness or in failure as-
sessment diagrams (FAD) analysis when correction of the FAD 
curve using constraint parameter is done (SINTAP, 1999), (FIT-
NET, 2006).  

Thus, in this paper, catalogue of the Q-T trajectories obtained 
using MBLA analysis will be presented. The influence of the 
material properties will be tested.  

3. DETAILS OF THE NUMERICAL ANALYSIS 

In the numerical analysis, ADINA System 8.5.4 (ADINA, 
2008a, b) was used. Computations were performed for plane 
strain using small strain option and the Modify Boundary Layer 
Approach (MBLA) model. The MBLA model consists of big circle, 
which radius around the crack tip where the boundary conditions 
are modeled is 10 meters long. Due to the symmetry, only a half 
of the circle was modeled (see Fig. 6). The boundary conditions 
are modeled using the following relationship: 
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where K is the stress intensity factor (SIF) calculated form  

J-integral value using formula  � = ���/(1 − ��) – in presen-

ted in the paper numerical program the following values of the  

J-integral were tested: J={10, 25, 50, 100, 250, 500}kN/m; r and θ 

are polar coordinates; ν is the Poisson’s ratio; E is Young’s 

modulus; T is the T stress expressed in stress unit (T⋅σ0) –  
in presented in the paper numerical program, the following values 
of the T parameter were tested: T={0.5, 0.25, 0, -0.25, -0.5, -1}; 

κ=3-4ν for plane strain; κ=(3-ν)/(1+ν) for plane stress. 

The radius of the crack front was equal to rw=5⋅10-6m. The 
crack tip was modeled as half of arc. The crack tip region about to 

5⋅10-4m was divide into 50 semicircles. The first of them, was at 
least 20 times smaller then the last one. The finite element mesh 
was filled with the 9-node plane strain elements. The size of the 
finite elements in the radial direction was decreasing towards the 
crack tip, while in the angular direction the size of each element 

was kept constant. It varied from ∆θ=π/19 to ∆θ=π/30 for various 
cases tested.  

The whole MBLA model was modeled using 2584 finite ele-
ments and 10647 nodes. The example finite element model 
for MBLA analysis is presented in Fig. 6. 

In the FEM simulation, the deformation theory of plasticity 
and the von Misses yield criterion were adopted. In the model 
the stress–strain curve was approximated by the relation: 
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The tensile properties for the materials which were used in the 
numerical analysis are presented below in Tab. 2. In the FEM 
analysis, calculations were done for sixteen material configura-
tions, which were differed by yield stress and the work hardening 
exponent. 
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a) 

 
b) 

 

Fig. 6. The MBLA model which was used in the numerical program a); 
Crack tip region using in the MBLA model b) 

The J-integral were calculated using two methods. The first 
method, called the “virtual shift method”, uses concept of the 
virtual crack growth to compute the virtual energy change. 
The second method is based on the J–integral definition:  

 

( )[ ]∫ ∂∂−=
C

dsxwdxJ 12 ut , (17) 

 

where w is the strain energy density, t is the stress vector acting 
on the contour C drawn around the crack tip, u denotes 
displacement vector and ds is the infinitesimal segment of contour 
C.  

Tab. 2. The mechanical properties of the materials used in numerical  
             analysis and the HRR parameters for plane strain 

σ0 
[MPa] 

E [MPa] ν ε0=σ0/E α n ( )0~ =θσ θθ  In 

315 

206000 0.3 

0.00153 

1 

3 1.94 5.51 

500 0.00243 5 2.22 5.02 

1000 0.00485 10 2.50 4.54 

1500 0.00728 20 2.68 4.21 

4. RESULTS OF THE NUMERICAL ANALYSIS 

 Fig. 7 presents the influence of the T stress parameter value 
on the shape and size (denoted in Fig. as rp) of the plastic zone 
near crack tip. For smaller value of the T stress parameter, the 
greater plastic zone is observed, if the same level of the J-integral 
was used to calculate the boundary conditions and the same 
material characteristic was established. The bigger plastic zone 
is observed for MBLA model characterized by smaller yield stress 
(see Fig. 8).  

a) 

 

 

b) 

 

c) 

 

Fig. 7. Influence of the T stress parameter on shape and size  
of the plastic zone for MBLA model characterized by σ0=315MPa, 
n=10, J=100kN/m: a) T=0.5, rp=0.029m; b) T=0, rp=0.033m;  
c) T=-0.5, rp=0.090m (brighter region is the plastic zone) 

For smaller values of the T stress parameter the, smaller 
value of the Q stress are observed.  The influence of the work 
hardening exponent on Q=Q(T) trajectories should be considered 
for a number of configurations. For the cases characterized by 

yield stress σ0≥500MPa and for J-integral values between 10 and 
25kN/m (which are used to determine the boundary conditions), 
the lower values of the Q stress are observed for weakly 
strengthen materials (see Fig. 9). For theses cases almost parallel 
arrangement of the Q=Q(T) trajectories is observed. The highest 
on the chart are situated curves for strongly strengthen material 
(n=3). 

In other cases, when the J-integral value is equal to or greater 
than 50kN/m, it can be seen the intersecting of the Q=Q(T) curves 
for different values of the work hardening exponent (see Fig. 10). 
For small values of the T stress parameter (which means that we 
are dealing with a case of high-level of the flat geometric 
constraints), the lower values of Q parameter are observed for 
weakly hardening materials. Increase value of the T stress 
parameter makes cutting curves and the reversal of the trend on 
the chart - then a smaller values of the Q parameter are observed 
for the case of the strongly hardening materials. 

Numerical analysis shown, that the influence of the yield 
stress on Q=Q(T) trajectories is quite complex. For small values of 
the J-integral (J=10kN/m or J=25kN/m), it can be concluded, that 
Q=Q(T) curves characterized by regularity of arrangement, 
especially for strong hardening materials (n=3 and n=5). The 
lowest on the charts are arranged the Q=Q(T) curves, described 
by small value of the yield stress. This means that for the 
materials characterized by higher yield stress, the higher values 
of the Q parameter are obtained (see Fig. 11). 
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a) 
 

 
b) 

 
c) 

 

Fig. 8. Influence of the yield stress on shape and size of the plastic zone 
for MBLA model characterized by T=0, n=10, J=100kN/m:  
a) σ0=500MPa, rp=0.013m; b) σ0=1000MPa, rp=0.003m;  
c) σ0=1500MPa, rp=0.001m (brighter region is the plastic zone) 

 
 Fig. 9. The influence of the work hardening exponent on the Q=Q(T) 

trajectories for MBLA characterized by σ0=500MPa, J=10kN/m 

The influence of the yield stress on Q=Q(T) trajectories 
is significant for the low level of the J-integral which was used to 
determination of the boundary conditions. Sometimes the 
influence of the yield stress on Q stress value is negligible, when 
material characterized by big work hardening exponent and the 

level of the J-integral is quite large (J≥50kN/m). For weakly 
hardening materials, Q=Q(T) trajectories are parallel, when J-
integral characterized by very high level (for example J=250kN/m 
or J=500kN/m). 

 
 Fig. 10. The influence of the work hardening exponent on the Q=Q(T) 

trajectories for MBLA characterized by σ0=315MPa, J=50kN/m 

 
 Fig. 11. The influence of the yield stress on the Q=Q(T) trajectories  

for MBLA characterized by n=3, J=25kN/m 

The most important conclusion concerns the influence of the 
J-integral (which is used to determination of the boundary 
conditions for MBLA model) on Q stress value. As shown 
by numerical calculations, the value of the Q parameter 
as a function of the T stress parameter  in a very small extent 
depends on the J-integral value adopted to determine the 
boundary conditions at MBLA issue. A very little impact (hardly 
insignificant), or the lack of impact is characterized for MBLA 
models, for which the J-integral level used to determination of the 
boundary conditions was equal to or greater than 50kN/m (see 
Fig. 12). 

Fig. 13 presents the influence of the work hardening exponent 
on Q stress value for different level of the T stress parameter, 
which may be considered as a measure of the “in-plane 
constraint” parameter. For the case of low constraints (low value 
of the T stress, equal to -0.5 or -1.0), Q stress value decreases 
when the value of the work hardening exponent increases. When 
the value of the T stress parameter is greater than -0.25, it can be 
seen that Q stress value is constant or slightly increases if value 
of the work hardening exponent increases. 
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a) 

b) 

c) 

Fig. 12. The influence of the J-integral value which was used to 
determination of the boundary conditions, on Q stress value  
for different T stress parameter: a) n=3, σ0=315MPa;  
b) n=5, σ0=315MPa; b) n=10, σ0=500MPa 

5. CONCLUSIONS 

In the paper, catalogue of the numerical solutions based 
on Modify Boundary Layer Approach to determine the relationship 
between Q-stress and T-stress were presented. Based on method 
proposed by Larsson and Carlsson, the Q-stress value were 
calculated for sixteen elastic-plastic materials for different value 
of T-stress and external load expressed by J-integral – both 
parameter were used to determine the boundary conditions, which 
are necessary to carry out the MBLA analysis. The influence 
of the T-stress parameter and material properties on Q-stress 
value were tested.  

a) 

 
b) 

 

c) 

 

Fig. 13. The influence of the work hardening exponent  
on Q stress value for different level of the T stress parameter:  
a) J=50kN/m, σ0=315MPa; b) J=100kN/m, σ0=500MPa;  
c) J=250kN/m, σ0=1000MPa 

Obtained numerical results lead to following conclusions:  

− for smaller value of the T stress parameter, the smaller value 
of the Q stress are observed; 

− the influence of yield stress on the Q stress value is significant 
for the case characterized by low level of the J-integral, 
adopted to determine the boundary conditions at MBLA issue;  

− in case of a higher level of the J-integral, it can be observed 
a little impact of the yield stress on the Q stress value,  
sometimes this effect is negligible; 

− for different T stress value, Q stress value depends on work 
hardening exponent n; this influence should be discussed 
for each MBLA models separately;   

− the Q stress parameter very weak depends (or in general 
does not depend) on the level of the J-integral adopted 
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to determine the boundary conditions in MBLA issue, 
especially for the case when the level of the J-integral is equal 
to or greater than 50kN/m. 
Presented in the paper such catalogue may be useful during 

solving the engineering problems, especially while is needed 
to determine real fracture toughness with including the geometric 
constraints, what was proposed in FITNET procedures (FITNET, 
2006). 

REFERENCES  

1. ADINA (2008a), ADINA 8.5.4: ADINA: Theory and Modeling Guide - 
Volume I: ADINA, Report ARD 08-7, ADINA R&D, Inc., 2008.  

2. ADINA (2008b), ADINA 8.5.4: ADINA: User Interface Command 
Reference Manual - Volume I: ADINA Solids & Structures Model 
Definition, Report ARD 08-6, ADINA R&D, Inc., 2008. 

3. Ainsworth R.A., O'Dowd N.P. (1994), A Framework of Including 
Constraint Effects in the Failure Assessment Diagram Approach 
for Fracture Assessment, ASME Pressure Vessels and Piping 
Conference,  PVP-Vol 287/MD-Vol47, ASME. 

4. Betegon, C. and Hancock, J.W. (1991), Two Parameter 
Characterization of Elastic-Plastic Crack Tip Fields, Journal 
of Applied Mechanics, Vol. 58, 104-110.  

5. Bilby, B.A., Cardew, G.E., Goldthorpe, M.R., Howard, I.C. (1986), 
A Finite Element Investigation of the Effects of Specimen Geometry 
on the Fields of Stress and Strain at the Tips of Stationary Cracks, 
Size Effects in Fracture, Institute of Mechanical Engineers, London, 
37-46.  

6. FITNET Fitness for Serwice Procedure – Final Draft (2006), 
Edited by M. Koçak, S. Webster, JJ. Janosh, RA. Ainsworth, R. 
Koers. 

7. Gałkiewicz J., Graba M. (2006), Algorithm for Determination 
of ����(�, �), 
�̃�(�, �), ���(�, �),  �(�) and !�(�)  Functions 

in Hutchinson-Rice-Rosengren Solution and its 3d Generalization, 
Journal of Theoretical and Applied Mechanics, Vol. 44, No. 1, 19-30. 

8. Hutchinson J. W. (1968), Singular Behaviour at the End 
of a Tensile Crack in a Hardening Material, Journal of the 
Mechanics and Physics of Solids, 16, 13-31. 

9. Irwin, G.R. (1957), Analysis of Stresses and Strains near the End 
of a Crack Traversing a Plate, Journal of Applied Mechanics,  
Vol. 24, 361-364. 

10. Leevers P.S., Radon J.C. (1983), Inherent Stress Biaxiality 
in Various Fracture Specimen Geometries, International Journal 
of Fracture, 19, 311-325 

11. McMeeking, R.M. and Parks, D.M. (1979), On Criteria  
for J-Dominance of Crack Tip Fields in Large-Scale Yielding, ASTM 
STP 668, American Society for Testing and Materials, Philadelphia, 
175-194.   

12. Neimitz A., Graba M., Gałkiewicz J. (2007), An Alternative 

Formulation of the Ritchie-Knott-Rice Local Fracture Criterion, 
Engineering Fracture Mechanics, Vol. 74, 1308-1322.  

13. O’Dowd N. P. (1995), Applications of two parameter approaches 
in elastic-plastic fracture mechanics, Engineering Fracture 
Mechanics, Vol. 52, No. 3, 445-46.  

14. O’Dowd N. P., Shih C. F. (1992), Family of Crack-Tip Fields 
Characterized by a Triaxiality Parameter – II. Fracture Applications, 
J. Mech. Phys. Solids, Vol. 40, No. 5, 939-963. 

15. O’Dowd N. P., Shih C.F. (1991), Family of Crack-Tip Fields 
Characterized by a Triaxiality Parameter – I. Structure of Fields,  
J. Mech. Phys. Solids, Vol. 39, No. 8, 989-1015. 

16. Rice J. R., Rosengren G. F. (1968), Plane Strain Deformation Near 
a Crack Tip in a Power-law Hardening Material, Journal of the 
Mechanics and Physics of Solids, 16, 1-12. 

17. Rice, J.R. (1968), A Path Independent Integral and the Approximate 
Analysis of Strain Concentration by Notches and Cracks, Journal 
of Applied Mechanics, Vol. 35, pp. 379-386.   

18. Sherry A.H., Hooton D.G., Beardsmore D.W., Lidbury D.P.G. 
(2005), Material constraint parameters for the assessment 
of shallow defects in structural components – Part II: constraint – 
based assessment of shallow cracks, Engineering Fracture 
Mechanics, 72, 2396-2415. 

19. Sherry A.H.,France C.C., Goldthorpe M.R. (1995), Compendium 
of T-stress solutions for two and three dimensional cracked 
geometries, Fatigue & Fracture of Engineering Materials 
& Structures, Vol. 18, No. 1, 141-155. 

20. Sherry, A.H., Wilkes M.A., Beardsmore D.W., Lidbury D.P.G. 
(2005), Material constraint parameters for the assessment 
of shallow defects in structural components – Part I: Parameter 
solutions, Engineering Fracture Mechanics, 72, 2373-2395. 

21. SINTAP (1999), SINTAP: Structural Integrity Assessment 
Procedures for European Industry. Final Procedure, Brite-Euram 
Project No BE95-1426. – Rotherham: British Steel.  

22. Sneddon, I.N. (1946), The Distribution of Stress in the 
Neighbourhood of a Crack in an Elastic Solid, Proceedings, Royal 
Society of London, Vol. A-187, 229-260. 

23. Sumpter J. G. D., Forbes A. T. (1992), Constraint based analysis 
of shallow cracks in mild steels, Proceedings of TWI/EWI/IS Int. 
Conf on Shallow Crack Fracture Mechanics, Toughness Tests and 
Applications, Paper 7, Cambridge U.K. 

24. Westergaard, H.M. (1939), Bearing Pressures and Cracks, Journal 
of Applied Mechanics, Vol. 6, 49-53. 

25. Williams, M.L. (1957), On the Stress Distribution at the Base  
of a Stationary Crack, Journal of Applied Mechanics, Vol. 24,  
109-114.  

Acknowledgments: The support of the Kielce University of Technology – 
Faculty of Mechatronics and Machine Design through grant No 1.22/7.14 
is acknowledged by the author of the paper.  
 

ANNEX - NUMERICAL RESULTS OBTAINED FOR ALL MBLA MODELS 

Tab. A.1. Results for MBLA models, characterized by J=10kN/m 

J=10kN/m 

σ0=315MPa 

n 

3 5 10 20 

T Q 

0.50 -0.03 0.05 0.05 0.02 

0.25 -0.17 -0.05 -0.01 -0.02 

0 -0.34 -0.23 -0.16 -0.15 

-0.25 -0.54 -0.46 -0.4 -0.39 

-0.50 -0.77 -0.74 -0.73 -0.76 

-1.00 -1.26 -1.34 -1.47 -1.65 

 

J=10kN/m 

σ0=500MPa 

n 

3 5 10 20 

T Q 

0.50 0.29 0.04 -0.14 -0.23 

0.25 0.18 -0.04 -0.19 -0.27 

0 0.05 -0.17 -0.29 -0.36 

-0.25 -0.12 -0.35 -0.46 -0.53 

-0.50 -0.31 -0.58 -0.73 -0.81 

-1.00 -0.74 -1.11 -1.40 -1.63 
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J=10kN/m 

σ0=1000MPa 

n 

3 5 10 20 

T Q 

0.50 0.46 0.1 -0.17 -0.30 

0.25 0.39 0.04 -0.19 -0.31 

0 0.30 -0.04 -0.25 -0.34 

-0.25 0.19 -0.16 -0.36 -0.43 

-0.50 0.05 -0.33 -0.54 -0.63 

-1.00 -0.29 -0.78 -1.16 -1.39 

J=10kN/m 

σ0=1500MPa 

n 

3 5 10 20 

T Q 

0.50 0.4 0.12 -0.07 -0.17 

0.25 0.36 0.07 -0.11 -0.20 

0 0.29 -0.01 -0.18 -0.26 

-0.25 0.2 -0.13 -0.3 -0.36 

-0.50 0.08 -0.28 -0.48 -0.56 

-1.00 -0.21 -0.70 -1.07 -1.28 

Tab. A.2. Results for MBLA models, characterized by J=25kN/m 

J=25kN/m 

σ0=315MPa 

n 

3 5 10 20 

T Q 

0.50 -0.02 0.007 0.04 0.04 

0.25 -0.14 -0.10 -0.03 -0.01 

0 -0.28 -0.25 -0.17 -0.15 

-0.25 -0.46 -0.44 -0.38 -0.35 

-0.50 -0.65 -0.69 -0.69 -0.70 

-1.00 -1.10 -1.26 -1.43 -1.60 

J=25kN/m 

σ0=500MPa 

n 

3 5 10 20 

T Q 

0.50 -0.14 -0.09 -0.03 0.008 

0.25 -0.25 -0.2 -0.13 -0.09 

0 -0.39 -0.34 -0.27 -0.24 

-0.25 -0.55 -0.53 -0.49 -0.48 

-0.50 -0.75 -0.77 -0.78 -0.83 

-1.00 -1.21 -1.36 -1.50 -1.66 

J=25kN/m 

σ0=1000MPa 

n 

3 5 10 20 

T Q 

0.50 0.06 0.03 -0.02 -0.07 

0.25 -0.04 -0.07 -0.08 -0.11 

0 -0.18 -0.21 -0.21 -0.23 

-0.25 -0.36 -0.42 -0.44 -0.46 

-0.50 -0.57 -0.69 -0.75 -0.80 

-1.00 -1.08 -1.35 -1.59 -1.78 

J=25kN/m 

σ0=1500MPa 

n 

3 5 10 20 

T Q 

0.50 0.29 0.04 -0.16 -0.27 

0.25 0.20 -0.03 -0.20 -0.29 

0 0.09 -0.14 -0.29 -0.37 

-0.25 -0.07 -0.31 -0.46 -0.53 

-0.50 -0.26 -0.54 -0.72 -0.80 

-1.00 -0.73 -1.13 -1.48 -1.7 

Tab. A.3. Results for MBLA models, characterized by J=50kN/m 

J=50kN/m 

σ0=315MPa 

n 

3 5 10 20 

T Q 

0.50 -0.08 -0.04 0.009 0.02 

0.25 -0.20 -0.14 -0.07 -0.04 

0 -0.34 -0.29 -0.20 -0.12 

-0.25 -0.50 -0.48 -0.41 -0.33 

-0.50 -0.70 -0.72 -0.70 -0.69 

-1.00 -1.16 -1.29 -1.44 -1.55 

J=50kN/m 

σ0=500MPa 

n 

3 5 10 20 

T Q 

0.50 -0.10 -0.04 0.01 0.02 

0.25 -0.22 -0.15 -0.07 -0.12 

0 -0.35 -0.29 -0.20 -0.23 

-0.25 -0.52 -0.48 -0.41 -0.37 

-0.50 -0.72 -0.73 -0.71 -0.72 

-1.00 -1.19 -1.35 -1.50 -1.34 

J=50kN/m 

σ0=1000MPa 

n 

3 5 10 20 

T Q 

0.50 -0.16 -0.10 -0.05 -0.01 

0.25 -0.25 -0.19 -0.13 -0.09 

0 -0.38 -0.33 -0.28 -0.25 

-0.25 -0.54 -0.52 -0.50 -0.49 

-0.50 -0.74 -0.77 -0.79 -0.82 

-1.00 -1.22 -1.40 -1.58 -1.73 

J=50kN/m 

σ0=1500MPa 

n 

3 5 10 20 

T Q 

0.50 -0.09 0.02 0.08 0.08 

0.25 -0.19 -0.08 0.001 0.02 

0 -0.32 -0.24 -0.16 -0.13 

-0.25 -0.50 -0.46 -0.40 -0.39 

-0.50 -0.72 -0.74 -0.75 -0.76 

-1.00 -1.25 -1.45 -1.66 -1.82 

Tab. A.4. Results for MBLA models, characterized by J=100kN/m 

J=100kN/m 

σ0=315MPa 

n 

3 5 10 20 

T Q 

0.50 -0.12 -0.06 -0.004 0.01 

0.25 -0.24 -0.16 -0.08 -0.04 

0 -0.38 -0.31 -0.22 -0.16 

-0.25 -0.55 -0.50 -0.42 -0.36 

-0.50 -0.75 -0.74 -0.72 -0.70 

-1.00 -1.21 -1.32 -1.46 -1.61 
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J=100kN/m 

σ0=500MPa 

n 

3 5 10 20 

T Q 

0.50 -0.13 -0.06 -0.005 0.01 

0.25 -0.24 -0.17 -0.084 -0.04 

0 -0.38 -0.30 -0.21 -0.22 

-0.25 -0.54 -0.50 -0.42 -0.36 

-0.50 -0.74 -0.75 -0.72 -0.72 

-1.00 -1.21 -1.37 -1.51 -1.67 

J=100kN/m 

σ0=1000MPa 

n 

3 5 10 20 

T Q 

0.50 -0.15 -0.08 -0.03 -0.006 

0.25 -0.23 -0.17 -0.10 -0.06 

0 -0.36 -0.30 -0.23 -0.19 

-0.25 -0.52 -0.50 -0.45 -0.42 

-0.50 -0.72 -0.75 -0.74 -0.75 

-1.00 -1.20 -1.40 -1.57 -1.74 

J=100kN/m 

σ0=1500MPa 

n 

3 5 10 20 

T Q 

0.50 -0.13 -0.08 -0.04 -0.02 

0.25 -0.20 -0.16 -0.11 -0.09 

0 -0.32 -0.30 -0.26 -0.23 

-0.25 -0.48 -0.50 -0.47 -0.46 

-0.50 -0.67 -0.74 -0.76 -0.78 

-1.00 -1.15 -1.38 -1.60 -1.76 

Tab. A.5. Results for MBLA models, characterized by J=250kN/m 

J=250kN/m 

σ0=315MPa 

n 

3 5 10 20 

T Q 

0.50 -0.14 -0.07 -0.01 0.008 

0.25 -0.26 -0.17 -0.08 -0.05 

0 -0.40 -0.32 -0.22 -0.15 

-0.25 -0.57 -0.51 -0.43 -0.38 

-0.50 -0.77 -0.75 -0.72 -0.72 

-1.00 -1.26 -1.35 -1.47 -1.62 

J=250kN/m 

σ0=500MPa 

n 

3 5 10 20 

T Q 

0.50 -0.16 -0.08 -0.01 0.004 

0.25 -0.27 -0.18 -0.09 -0.05 

0 -0.40 -0.32 -0.22 -0.17 

-0.25 -0.57 -0.51 -0.43 -0.38 

-0.50 -0.77 -0.76 -0.73 -0.71 

-1.00 -1.26 -1.39 -1.52 -1.68 

J=250kN/m 

σ0=1000MPa 

n 

3 5 10 20 

T Q 

0.50 -0.17 -0.1 -0.04 -0.02 

0.25 -0.26 -0.19 -0.12 -0.08 

0 -0.38 -0.33 -0.25 -0.22 

-0.25 -0.55 -0.52 -0.46 -0.44 

-0.50 -0.74 -0.72 -0.75 -0.76 

-1.00 -1.22 -1.41 -1.58 -1.74 

J=250kN/m 

σ0=1500MPa 

n 

3 5 10 20 

T Q 

0.50 -0.19 -0.14 -0.08 -0.06 

0.25 -0.27 -0.22 -0.16 -0.13 

0 -0.38 -0.35 -0.30 -0.27 

-0.25 -0.54 -0.54 -0.50 -0.49 

-0.50 -0.73 -0.78 -0.79 -0.80 

-1.00 -1.20 -1.40 -1.61 -1.77 

Tab. A.6. Results for MBLA models, characterized by J=500kN/m 

J=500kN/m 

σ0=315MPa 

n 

3 5 10 20 

T Q 

0.50 -0.15 -0.08 -0.01 0.005 

0.25 -0.27 -0.18 -0.09 -0.05 

0 -0.41 -0.33 -0.23 -0.17 

-0.25 -0.58 -0.52 -0.43 -0.38 

-0.50 -0.78 -0.76 -0.73 -0.73 

-1.00 -1.30 -1.38 -1.47 -1.50 

J=500kN/m 

σ0=500MPa 

n 

3 5 10 20 

T Q 

0.50 -0.17 -0.09 -0.02 0.002 

0.25 -0.28 -0.19 -0.10 -0.05 

0 -0.41 -0.33 -0.23 -0.17 

-0.25 -0.58 -0.52 -0.43 -0.38 

-0.50 -0.78 -0.77 -0.73 -0.72 

-1.00 -1.29 -1.42 -1.53 -1.62 

J=500kN/m 

σ0=1000MPa 

n 

3 5 10 20 

T Q 

0.50 -0.19 -0.12 -0.05 -0.03 

0.25 -0.28 -0.21 -0.13 -0.09 

0 -0.40 -0.34 -0.26 -0.22 

-0.25 -0.56 -0.53 -0.47 -0.45 

-0.50 -0.76 -0.78 -0.76 -0.77 

-1.00 -1.25 -1.43 -1.59 -1.75 

J=500kN/m 

σ0=1500MPa 

n 

3 5 10 20 

T Q 

0.50 -0.23 -0.16 -0.1 -0.08 

0.25 -0.30 -0.24 -0.18 -0.14 

0 -0.42 -0.38 -0.32 -0.28 

-0.25 -0.57 -0.56 -0.53 -0.50 

-0.50 -0.76 -0.80 -0.80 -0.82 

-1.00 -1.23 -1.43 -1.62 -1.78 

 


