PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Convective Cooling of a Disc Brake During Single Braking

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study is primarily focused on the investigation of an impact of heat transfer coefficient on heat dissipation from the solid disc using the finite element method (FEM). The analysis was carried out within four individual cases of braking of the passenger vehicle simulating mountain descent with different velocities and the following release periods, where the convective terms of cooling were dependent on the angular velocity of the disc. For the purpose of confronting contrasting conditions of the braking action, apart from heating region, the whole surface of the disc was insulated. The process was performed under the operation conditions of a real front disc brake, whose dimensions and thermophysical properties of materials were adopted and applied to the FE model. It was concluded that the influence of cooling of the exposed surfaces of the disc during relatively short braking is insignificant. However the period after brake release results in considerable decrease in temperature of the disc.
Rocznik
Strony
5--10
Opis fizyczny
Bibliogr. 25 poz., Wykr.
Twórcy
autor
autor
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.adamowicz@pb.edu.pl
Bibliografia
  • 1. Adamowicz A., Grzes P. (2011a), Analysis of disc brake temperature distribution during single braking under nonaxisymmetric load, Applied Thermal Engineering, Vol. 31, No. 6–7, 1003–1012.
  • 2. Adamowicz A., Grzes P. (2011b), Influence of convective cooling on a disc brake temperature distribution during repetitive braking, Applied Thermal Engineering, Vol. 31, No. 14–15, 2177–2185.
  • 3. Awrejcewicz J., Pyr’yev Yu. (2009), Nonsmooth dynamics of contacting thermoelastic bodies, Springer-Verlag, New York.
  • 4. Bauzin J.-G., Laraqi N. (2004), Simultaneous estimation of frictional heat flux and two thermal contact parameters for sliding contacts, Numerical Heat Transfer, Part A: Applications, Vol. 45, No. 4, 313–328.
  • 5. Belhocine A., Bouchetara M. (2012), Thermal analysis of a solid brake disc, Applied Thermal Engineering, Vol. 32, 59-67.
  • 6. Charron F. (1943), Partage de la chaleur entre deux corps frottants, Publ. scient. et techn. Ministere air., No. 182.
  • 7. Gao C. H., Huang J. M., Lin X. Z., Tang X. S. (2007), Stress analysis of thermal fatigue fracture of brake disks based on thermomechanical coupling, ASME Journal of Tribology, Vol. 129, No. 3, 536–543.
  • 8. Gao C. H., Lin X. Z. (2002), Transient temperature field analysis of a brake in a non-axisymmetric three-dimensional model, Journal of Materials Processing Technology, Vol. 129, No. 1-3, 513–517.
  • 9. Grzes P. (2009), Finite element analysis of disc temperature during braking process, Acta Mechanica et Automatica, Vol. 3, No. 4., 36–42.
  • 10. Grzes P. (2010), Finite element analysis of temperature distribution in axisymmetric model of disc brake, Acta Mechanica et Automatica, Vol. 4, No. 4, 23–28.
  • 11. Grzes P. (2011a), Partition of heat in 2D finite element model of a disc brake, Acta Mechanica et Automatica, Vol. 5, No. 2, 35–41.
  • 12. Grzes P. (2011b), Influence of thermosensitivity of materials on the temperature of a pad/disc system, Acta Mechanica et Automatica, Vol. 5, No. 4, 46–53.
  • 13. Holman J. P. (1990), Heat Transfer, McGraw-Hill, Inc.
  • 14. Laraqi N., Baıri A., Ségui L. ̈ (2004), Temperature and thermal resistance in frictional devices, Applied Thermal Engineering, Vol. 24, No. 17–18, 2567–2581.
  • 15. Luikov A. V. (1968), Analytical heat diffusion theory, Academic Press, New York.
  • 16. Mills A. F. (1995), Heat and Mass Transfer, Richard D. Irwin Inc, Chicago.
  • 17. Nowacki W. (1962), Thermoelasticity, Pergamon Press, Oxford.
  • 18. Scieszka S. F. (1998), Hamulce cierne. Zagadnienia konstrukcyjne, materiałowe i tribologiczne, WZP – IteE, Radom.
  • 19. Scieszka S., Zolnierz M. (2007a) The effect of the mine winder disc brake's design feature on its thermoelastic instability. Part I. Set-up for finite element modelling and numerical model verification, Problems of Machines Operation and Maintenance Vol. 42, No. 3, 111–124.
  • 20. Scieszka S., Zolnierz M. (2007b), The effect of the mine winder disc brake’s design feature on its thermoelastic instability. Part II. Finite element simulation, Problems of Machines Operation and Maintenance Vol. 42, No. 4, 183–193.
  • 21. Talati F., Jalalifar S. (2008), Investigation of heat transfer phenomena in a ventilated disk brake rotor with straight radial rounded vanes, Journal of Applied Sciences, Vol. 8, No. 20, 3583–3592.
  • 22. Talati F., Jalalifar S. (2009), Analysis of heat conduction in a disk brake system, Heat Mass Transfer, Vol. 45, No. 8, 1047–1059.
  • 23. Wawrzonek L., Bialecki R. A. (2008), Temperature in a disk brake, simulation and experimental verification, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 18, No. 3–4, 387–400.
  • 24. Yevtushenko A., Grzes P. (2010), FEM-modeling of the frictional heating phenomenon in the pad/disc tribosystem (a review), Numerical Heat Transfer Part A, Vol. 58, No. 3, 207–226.
  • 25. Zagrodzki P. (1985), Numerical analysis of temperature fields and thermal stresses in the friction discs of a multidisc wet clutch, Wear, Vol. 101, No. 3, 255–271.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0068-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.