PREMISES OF PARAMETRICAL ASSESSMENT OF TURBOJET ENGINE IN FLIGHT REGULATION CONDITION DURING GROUND TEST

Paweł LINDSTEDT*, Karol GOLAK*

Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45 C, 15-351 Bialystok, Poland

p.lindstedt@poczta.pb.edu.pl, karolgolak@gmail.com

Abstract: The article presents the theoretical bases of new parametrical method of turbojet engine technical condition assessment. In this method, engine technical condition is described by one (in other methods four are used) comprehensive model (binding engine input – signals p_2 and m_p and engine output - n and p_4 signals) with unique feature, that engine operation quality during ground tests will provide necessary data on its performance in flight. The changes occurring in turbojet engine during its exploitation will be measurable by comparison of standard model with parameters obtained from experiment (ground test).

Key words: Regulation, Computer Simulation, Turbine Jet Engine, Parametric Diagnostics, Ground Tests

1. INTRODUCTION

Proper regulation of turbine turbojet engines as well as other objects is a necessary condition for safe usage admission. Currently, in process of engine performance signals courses and their quality indicators values are researched in precisely determined moments during ground tests. Such method of engine performance assessment is unreliable due to differences between environment (temperature, pressure) influencing engine during ground tests and in flight as well as impossibility to imitate noises, usually unknown, affecting engine in flight during ground tests. This may cause a situation where proper regulation during ground tests may not provide sufficient utilitarian value for engine in flight. Hence the necessity of finding new researching method allowing engine performance determined during ground tests to provide data on its performance in flight. One of such methods is comprehensive (simultaneous analysis of four basic signals resulting from engine operation), parametrical (engine performance is described by 32 parameters) method of turbojet engine regulation condition assessment.

2. THEORETICAL BASIS OF PARAMETRICAL ASSESSMENT OF AIRCRAFT ENGINE REGULATION CONDITION DURING GROUND TESTS REFLECTING ITS STATE IN FLIGHT

Currently, during aircraft regulation condition assessment, quality indicators of engine signals courses determined during ground tests are of major significance. However these are often inadequate to in flight indicators due to noise and environment changes. Hence the need occurred to supplement the quality indicators of signals courses determined during ground tests with additional parameter – regulation potential, obtained from equation of state binding system operation quality and its technical condition. (Balicki and Szczeciński, 2001; Gosiewski and Paszkowski, 1995; Lindstedt 2002, 2009). Noticeably, this problem may

44

be solved by transforming signals into system parameters such as amplification coefficients, time constants. Obtained parameters allow to assess the value of other, unknown parameters that occur in flight.

Simplified diagram of engine rotational speed regulation system is presented on Fig. 1.

Fig. 1. Simplified diagram of aircraft engine regulation system: $G_{S^{-}}$ engine transfer function, G_{R} – regulator trans function, w – input function, u – signal of influence of regulator onto object, z – interference, y – applied signal (e.g. rotational speed), x – object incentive signal, e – deviation signal

In order to assess the engine operation, transfer functions of closed-loop system for an input function H_W (1) (ground tests) and of closed-loop system for interference H_Z (2) in flight tests (Pełczewski, 1980; Piety, 1998):

$$H_W = \frac{y}{w} = \frac{G_S G_R}{1 + G_S G_R} \tag{1}$$

$$H_Z = \frac{y}{z} = \frac{G_S}{1 + G_S G_R} \tag{2}$$

Noticeably system ground test transfer function may be multiplied by controller transfer function reciprocal G_R of given test, and thus, by transfer functions determined during ground tests, obtain the transfer function describing engine in flight.

$$H_Z = H_Z \cdot \frac{1}{G_R} \tag{3}$$

This gives base for assessment of regulation conditions of turbine turbojet engine in flight based on its ground tests (Lindstedt 2002, 2009).

3. THEORETICAL FUNDAMENTALS FOR JOINT CONSIDERATION OF ENGINE REGULATION CONDITION ASSESSMENT MODELS

Four basic signals n – rotational speed, p_2 – pressure behind the compressor, m_{p^-} mass intensity of fuel flow, p_4 – pressure in engine nozzle, are considered in process of engine regulation condition assessment (Fig. 2) (Lindstedt, 2009; Staniszewski, 1980; Szczeciński, 1965; Szevjakow, 1970).

Fig. 2. Engine regulation diagram (where W – intake, S – compressor, KS – combustion chamber, T – turbine, D – nozzle, outlet, 1,2,3,4,5 – characteristic sections)

Each relation between main signal, described by following transfer functions, are researched in order to assess engine performance (Balicki, Szczeciński, 2001, Lindstedt, 2002):

$$G_{1m_p} = \frac{\Delta n}{\Delta m_p} \tag{4}$$

$$G_{1p_2} = \frac{\Delta n}{\Delta p_2} \tag{5}$$

$$G_{2m_p} = \frac{\Delta p_4}{\Delta m_p} \tag{6}$$

$$G_{2p_2} = \frac{\Delta p_4}{\Delta p_2} \tag{7}$$

Assumingly, model in form of four transfer functions might be reduced to one comprehensive model with desired feature that allows engine performance determined during ground tests to provide data on its quality in flight.

After removing output signals Δn and Δp_4 from equations (4)÷(7), the following is obtained:

$$G_{1m_p1p_2} = \frac{\Delta p_2}{\Delta m_p} \tag{8}$$

$$G_{2m_p 2p_2} = \frac{\Delta p_2}{\Delta m_p} \tag{9}$$

Subsequently, input signals Δm_p and Δp_2 are removed and the following is obtained from equations (4)÷(7) as well:

$$G_{1n1p_4} = \frac{\Delta n}{\Delta p_4} \tag{10}$$

$$G_{2n2p_4} = \frac{\Delta n}{\Delta p_4} \tag{11}$$

In the end, model is created in form of quotient of relations of output signals transform to relation of input signals transform:

$$G_{kompleks}(s) = \frac{G_{1n1p_4}}{G_{1m_p1p_2}} = \frac{G_{2n2p_4}}{G_{2m_p2p_2}}$$
(12)

Taking dependences (10) and (12) into consideration, the following is obtained:

$$G_{kompleks}(s) = \frac{\frac{\Delta m_4}{\Delta p_4}}{\frac{\Delta m_p}{\Delta p_2}}$$
(13)

۸m

Using inverse Laplace transform following is determined: (Osiowski, 1981; Szabatin, 2000).

$$g_{kompleks}(t) * \Delta p_4 * \Delta p_2 = \Delta n * \Delta m_p \tag{14}$$

As seen from dependences (13), (14), one comprehensive engine model exists that corresponding to 4 classical models applied hitherto in engine regulation condition assessment process. This model is a transfer function (13) or dependence of courses *n* and m_p tangle (14). Tangle model (14) is difficult to solve. Model (13) is more suitable for further analysis. In case of adopting model in form of transfer function (13), transition can be made from space of variable *s* to space of frequency ω , hence obtaining ability to analyze signals basing on power densities and cross power densities for signals recorded during engine test.

Transfer function $G_{kompleks}(j\omega)$ argument may be determined from dependence (13):

$$ArgG_{kompleks}(j\omega) = \Delta \varphi_{np_4p_2m_P} = \Delta \varphi_{np_4} - \Delta \varphi_{p_2m_P}$$
(15a)

$$ArgG_{kompleks}(j\omega) = Arg \frac{\frac{S_{np_4}}{S_{p_4p_4}}}{\frac{S_{p_2m_p}}{S_{m_pm_p}}}$$
(15b)

Subsequently, transfer function $G_{kompleks}(j\omega)$ modulus square may be determined:

$$|G_{kompleks}(j\omega)|^{2} = \frac{\frac{S_{nn}}{S_{p_{4}p_{4}}}}{\frac{S_{p_{2}p_{2}}}{S_{m_{p}m_{p}}}} = \frac{A_{nnp_{4}p_{4}}^{2}}{A_{p_{2}p_{2}m_{p}m_{p}}^{2}}$$
(16)

where: *S* – power spectral density or cross power spectral density, $A^2(\omega)$ – amplification square, $\varphi(\omega)$ – phase shift.

Signals power S spectral density functions is determined basing on their correlation functions with Fourier transform applied. Therefore, when courses n(t), $p_4(t)$, $p_2(t)$ and $m_p(t)$ are known, determination of their correlation and cross correlation functions and, subsequently, power spectral densities and cross power spectral densities should prove no difficulty. In the end, transfer function $G_{kompleks}(j\omega)$ and, then, signals amplification square $|G_{kompleks}(j\omega)|^2$ might be determined. Similarly, basing on cross power spectral density, phase shift $\Delta \varphi_{np_4p_2m_P}$ is determined $(A_{nnp_4p_4}^2$ and $\Delta \varphi_{np_4p_2m_P}$ being values physically interpretable). (Osiowski, 1981; Szabatin, 2000).

4. COMPREHENSIVE, PARAMETRICAL ANALYSIS OF ENGINE REGULATION CONDITION BASING ON ENGINE EXPLOITATION RESEARCH

Recorded courses of input and output signals of turbojet engine are shown in Fig. 3. and Fig. 4. (Pawlak et al., 1996).

Additionally, assumption is made that *DProb* course corresponds with signal m_p course, signal *P4* with signal p_4 , signal *N* with signal *n* and *P2* with signal p_2 .

Ranges for determination of amplification value $|G_{kompleks}(j\omega)|^2$, as well as phase shift $\Delta \varphi_{np_4p_2m_P}$ were determined dividing signal N onto sections as seen in Fig. 5. and Tab. 1.

(signal observation time 350 – 500 [s])

 Tab. 1. Signal n ranges for beginning and end of signal course types

Signal <i>n</i> range for the beginning of signal	Signal <i>n</i> range for the end of signal	Signal type
<0,0.33>	(0.33,0.67>	1
<0,0.33>	(0.67,1>	2
(0.33,0.67>	<0,0.33>	3
(0.33,0.67>	(0.67,1>	4
(0.67,1>	<0,0.33>	5
(0.67,1>	(0.33,0.67>	6

Recorded characteristics of basic signals n(t), $p_4(t)$, $p_2(t)$ i $m_p(t)$ were divided onto sections according to assumptions presented in table 1. Hanning window was put on each of obtained sections. For obtained signal courses autocorrelations and cross correlations of signals n and p_4 as well as p_2 and mp were calculated. Obtained charts of autocorrelations and cross-correlations were approximated with precision of R²>0.995 (described by determination coefficient) using 4 degree polynomials in general form of:

$$R_{xv}(\tau) = l_4 \tau^4 + l_3 \tau^3 + l_2 \tau^2 + l_1 \tau + l_0 \tag{17}$$

$$R_{yy}(\tau) = k_4 \tau^4 + k_3 \tau^3 + k_2 \tau^2 + k_1 \tau + k_0$$
(18)

In order to determine function spectral power from obtained

autocorrelation and cross-correlation functions, bilateral Fourier transform was used. Subsequently engine models in form of amplification / $G_{kompleks}(j\omega)$ /² and phase shift $\Delta \varphi_{np_4p_2m_P}$ during ground test were determined in general form of:

$$|G_{kompleks}(j\omega)|_{i}^{2} = \frac{a_{i8}s^{8} + a_{i7}s^{7} + a_{i6}s^{6} + a_{i5}s^{5} + a_{i4}s^{4} + a_{i3}s^{3} + a_{i2}s^{2} + a_{i1}s + a_{i0}}{b_{i5}s^{8} + b_{i7}s^{7} + b_{i7}s^{6} + b_{i7}s^{5} + b_{i7}s^{4} + b_{15}s^{3} + b_{15}s^{2} + b_{15}s^{4} + b_{15}s^{2} + b_{15}s^{4} + b_{15}s$$

$$\Delta \varphi_{np_4p_2m_P}|_i = Arg(\frac{c_{i8}s^8 + c_{i7}s^7 + c_{i6}s^6 + c_{i5}s^5 + a_{i4}s^4 + a_{i3}s^3 + a_{i2}s^2 + a_{i1}s + a_{i0}}{b_{i8}s^8 + ba_{i7}s^7 + b_{i6}s^6 + b_{i5}s^5 + b_{i4}s^4 + b_{i3}s^3 + b_{i2}s^2 + b_{i1}s + 1})$$
(20)

Changes occurring in engine during its exploitation may be determined by determining percentage values of each δ parameter (24) deviation from approximate μ (21) for each signal course types (Fig. 4.) and comparing them to variability coefficient *v* (22) presented as a percentage and calculated for standard deviations σ (23), 2σ and 3σ .

$$u_{l} = \frac{\sum_{i=1}^{n} x_{il}}{n}$$
(21)

$$v_l = \frac{\sigma_l}{m} \cdot 100\% \tag{22}$$

$$\sigma_l = \sqrt{(x_{il} - \mu_l)^2} \tag{23}$$

$$\delta_{il} = \frac{x_{il} - \mu_l}{\mu_l} \cdot 100\%$$
 (24)

where: x – parameter a, b, c or d; l – parameter number.

Results are presented as percentage of regulation potential ϑ for each parameter.

$$\vartheta_{il} = \frac{v_l - \delta_l}{v_l} \cdot 100\% \tag{25}$$

Results of undertaken research in form of regulation potential ϑ of parameters from 5 tests for each of six signal types are presented in Tab. 2. for amplification as well as in Tab. 3. for phase shift.

Engine condition is described by 34 parameters with specific value. For various courses, different configurations and parameter values are obtained. During consecutive tests with identical program, parameters values should remain unchanged. Regulation changes applied during engine ground test, expressed as change of regulator transfer function reciprocal *1/GR* may be introduced into model and ultimately allow determination of engine parameters in flight.

Tab. 2. A² model parameters

type	nr	a 0	a 1	a 2	a ₃	a 4	a 5	a 6	a 7	a 8	b 1	b ₂	b₃	b 4	b₅	b ₆	b 7	b ₈
1	1	43	158	40	166	16	195	104	18	247	2	184	46	81	218	-59	82	237
	2	128	59	160	9	249	-67	50	250	-43	0	220	-50	291	-74	139	292	-55
	3	86	114	85	118	71	145	95	69	149	63	129	85	86	150	42	82	156
	4	271	-64	253	-33	180	187	-27	179	29	245	-37	219	34	64	233	35	41
	5	-29	234	-38	240	-15	40	277	-16	118	190	4	201	8	143	145	9	121
2	1	297	-97	297	-93	286	-84	234	284	-94	193	45	64	261	-92	276	276	-94
	2	62	153	27	195	-3	169	186	-6	149	223	-43	263	-15	148	136	0	147
	3	40	152	60	117	113	73	99	117	104	9	200	0	152	98	49	134	105
	4	77	121	79	126	52	183	-28	49	173	109	72	164	10	179	51	15	176
	5	24	171	37	154	52	159	9	56	168	-34	226	10	93	167	-12	75	167
	1	110	85	117	86	69	178	57	65	199	60	138	71	86	205	37	79	200
3	2	-14	222	-27	227	25	-76	261	27	-71	249	-47	240	7	-69	270	15	-72
	3	24	174	29	169	38	51	157	43	79	182	17	186	5	88	159	14	83
	4	276	-72	268	-70	297	171	-31	298	90	-21	225	-37	278	77	12	287	89
	5	103	90	114	87	72	176	56	67	202	30	167	40	123	199	22	106	200
	1	299	-98	291	-68	188	191	-57	173	-15	202	3	188	37	39	242	35	2
	2	42	150	64	110	146	-13	125	150	54	18	184	14	190	19	34	184	44
4	3	38	173	11	212	-36	201	186	-34	260	141	55	153	25	244	96	25	258
	4	58	126	100	59	205	-28	33	216	34	-51	251	-51	249	1	-43	253	19
	5	64	149	35	187	-4	149	214	-4	168	191	/	196	-1	196	1/1	3	1//
	1	152	48	152	49	151	151	49	151	49	130	62	144	53	149	50	151	49
	2	154	46	154	46	155	150	47	153	48	96	81	134	57	149	48	152	48
5	3	149	51	149	51	149	150	51	149	51	157	45	153	48	150	50	149	51
	4	-100	300	-100	300	-100	-100	300	-100	300	-87	295	-99	300	-100	300	-100	300
	5	146	54	146	55	145	149	53	147	52	204	16	168	42	151	52	148	52
	1	57	181	0	205	30	-90	259	19	-81	255	-53	246	47	-84	272	20	-81
6	2	45	137	/6	119	60	1/8	/1	69	1/2	45	154	48	116	168	37	130	167
	3	124	103	//	137	49	88	144	44	63	1//	20	188	-49	/1	154	-40	64
	4	282	-92	292	-91	299	158	-46	296	1/1	-14	215	-20	253	1/5	5	245	181
	5	-8	172	55	130	62	165	73	71	175	37	163	39	133	170	32	144	169

Tab. 3. Regulation potential for $\Delta \phi$ model

type	nr	a ₀	a 1	a 2	a ₃	a 4	a 5	a ₆	a 7	a ₈	b 1	b ₂	b₃	b 4	b₅	b ₆	b 7	bଃ
1	1	27	178	15	188	18	172	70	25	179	89	99	125	34	179	39	39	179
	2	95	84	152	-4	247	-29	67	269	-5	-26	249	-84	292	-18	102	296	-12
	3	111	85	115	101	51	207	-35	46	190	71	115	115	30	193	21	36	193
	4	279	-69	250	-17	190	-13	270	158	-39	282	-66	221	105	-26	293	88	-32
	5	-12	222	-32	233	-6	163	128	2	175	85	102	122	39	173	45	41	172
2	1	300	-100	300	-100	300	-100	262	300	-100	257	111	-87	299	-100	276	300	-100
	2	54	150	44	161	40	153	172	44	151	174	-84	209	33	152	142	44	151
	3	47	151	53	142	61	142	19	58	145	-7	215	100	68	143	5	59	145
	4	54	146	54	147	51	152	28	49	151	56	102	147	49	152	56	48	152
	5	46	153	48	150	49	153	19	49	152	20	155	131	51	154	21	49	152
	1	100	94	109	94	64	180	58	62	191	69	125	89	52	192	41	47	190
3	2	-15	228	-37	237	20	-93	280	24	-81	248	-42	222	87	-81	284	92	-82
	3	45	150	54	144	47	103	119	49	128	176	20	192	-15	136	129	-2	129
	4	283	-76	271	-71	297	141	-18	298	75	-32	240	-57	285	71	17	290	77
	5	87	104	103	96	72	169	61	68	187	39	157	55	91	183	30	74	186
	1	300	-98	284	-44	169	91	114	121	-44	241	-39	233	-10	22	263	-4	-14
	2	54	134	85	84	150	32	33	162	90	22	179	19	184	40	34	176	75
4	3	42	174	4	219	-31	251	177	-23	248	127	70	138	38	261	95	36	255
	4	43	132	108	36	219	-36	-52	242	43	-43	244	-46	251	4	-32	258	14
	5	61	157	19	204	-7	162	228	-2	164	153	46	156	36	172	139	34	169
	1	60	141	58	144	56	52	148	86	111	43	156	45	153	49	150	86	112
	2	69	130	71	127	90	47	139	90	109	11	180	30	161	48	145	88	110
5	3	43	156	45	155	46	47	153	85	113	56	146	52	149	50	151	85	113
	4	298	-98	298	-98	294	300	-100	155	53	292	-96	298	-99	300	-100	158	50
	5	29	171	29	173	14	53	159	83	114	97	114	75	137	54	154	83	115
	1	64	181	-5	213	14	-79	259	0	-76	237	-33	219	145	-78	263	130	-76
6	2	34	141	75	118	60	174	67	72	170	87	110	104	-12	175	51	8	166
	3	93	129	58	150	46	59	154	43	52	179	18	188	10	56	164	-11	52
	4	293	-97	291	-85	295	178	-36	289	178	-47	250	-59	265	176	-11	269	187
	5	16	145	81	105	84	169	56	96	175	44	156	48	91	170	33	104	170

5. SUMMARY

Comprehensive model for turbojet engine regulation condition assessment was executed. This model allows calculating amplification $|G_{kompleks}(j\omega)|^2$ and phase Shift $\Delta \varphi_{np_4p_2m_P}$, that may be physically interpreted. Engine condition is described by 34 parameters of specific value, assuming various configurations for different ground tests signal courses. Obtained parameters present regulation condition of turbojet engine. Changes in engine occurring during its exploitation are expressed as parameters $|G_{kompleks}(j\omega)|^2$ and $\Delta \varphi_{np_4p_2m_P}$ changes and by changes of regulator adjustment. Parameters of ground model and regulations may be the basis to determine engine in flight model according to dependence $H_Z=H_W \cdot 1/G_R$.

REFERENCES

- 1. Balicki W., Szczeciński S. (2001), Diagnozowanie lotniczych silników odrzutowych, Wyd. Nauk. Instytutu Lotnictwa, Warszawa.
- 2. Bendat J. S., Piersol A. G. (1976), Metody analizy i pomiaru sygnałów losowych, PWN, Warszawa.
- Gosiewski Z., Paszkowski M. (1995), Globalny wskaźnik diagnostyczny turbinowego silnika odrzutowego, *III Krajowa Konferencja Diagnostyka techniczna urządzeń i systemów nr 328/95*, Wyd. ITWL, Warszawa.
- 4. Lindstedt P. (2002), *Praktyczna diagnostyka maszyn i jej teoretyczne podstawy*, Wyd. Nauk. ASKON, Warszawa.
- Lindstedt P. (2009), Possibilities of assessment of the potential of Aircraft Engines, *Solid State Phenomena*, Vols 147-149/2009, Trans Tech Publications, Switzerland.
- 6. **Osiowski J.** (1981), *Zarys rachunku operatorowego*, WNT, Warszawa.
- Pawlak W. I., Wiklik K., Morawski J. M. (1996), Synteza i badanie układów sterowania lotniczych silników turbinowych metodami symulacji komputerowej, Wyd. Nauk. Instytutu Lotnictwa, Warszawa.
- 8. Pełczewski W. (1980), Teoria sterowania, WNT, Warszawa.
- 9. **Piety K. R.** (1998), *Method for determining rotational speed from machine vibration data*, United States Patent no. 5,744,723, US.
- Staniszewski R. (1980), Sterowanie zespołów napędowych, WKŁ, Warszawa.
- 11. Szabatin J. (2000), Podstawy teorii sygnałów, WKŁ, Warszawa.
- 12. Szczeciński S. (1965), Lotnicze silniki turbinowe, MON, Warszawa.
- 13. Szevjakow A. (1970), Awtomatika awiacionnych i rakietnych siłowych ustanowok, Maszinostrojenije, Moskwa.

This work was realized within the Dean's Projects: Paweł Lindstedt W/WM/4/2009, Karol Golak W/WM/9/2011 in Faculty of Mechanical Engineering on Bialystok University of Technology.