PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and Adhesive Properties of Nanocomposites Based on Functionalized Nanofillers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanocomposite samples of the copolymer of ethylene and vinyl acetate containing carbon nanofibers and nanotubes have been prepared by mixing in solution. In order to improve interfacial interactions in the polymer-nanofiller system they were subjected to a preliminary chemical functionalization. The efficiency of functionalization was estimated by the IR spectroscopy. The X-ray diffraction and strength characteristics of the obtained nanocomposites filled by the untreated and functionalized carbon nanofibers and nanotubes with different filling degree were compared.
Rocznik
Strony
105--109
Opis fizyczny
Bibliogr. 17 poz., Rys.
Twórcy
autor
autor
  • Research Center of Resource Saving Problems of National Academy of Sciences of Belarus, Grodno, Belarus, resource@mail.grodno.by
Bibliografia
  • 1. Airapetyan L. H. (1980), Ref. book on glues, Leningrad, Khimiya.
  • 2. Anoshkin I. V. (2008), Chemical modification and fractioning of thin multilayered carbon nanotubes, Dissertation, Rus. Chem.-Technol. Univ. named after D.I. Mendeleev.
  • 3. Bahr J. L. (2002), Covalent chemistry of single-wall carbon nanotubes, J. Mater. Chem., Vol. 1952–1958.
  • 4. Cipiriano B. H. (2007), Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites, Polymer, Vol. 48, 6086–6096.
  • 5. Hung N.Ch. (2009), Modification of carbon nanotubes and nanofibers for obtaining ceramic nanocomposites. Dissertation, Rus. Chem.-Technol. Univ. named after D.I. Mendeleev.
  • 6. Jale F.H. (1968), Polymer monocrystals, Moscow, Khimiya.
  • 7. Dyke C. A. (2004), Covalent functionalization of single-wall carbon nanotubes for materials applications, J. Phys. Chem. A., Vol. 108, 11151-11159.
  • 8. Grimes C. A. (2001), Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes, J. of Applied physics, Vol. 90, No 8, 4134–4137.
  • 9. Haggenmueller R. (2006), Interfacial in situ polymerization of single wall carbon nanotube/nylon 6,6 nanocomposites, Polymer, Vol. 47, 2381-2388.
  • 10. Kodgire P. V. (2006), Control of multiwall carbon nanotubes dispersion in polyamide6 matrix: An assessment through electrical conductivity, Chemical Physics Letters, Vol. 432, 480–485.
  • 11. Lin T. S. (2005), Percolated network of entangled multiwalled carbon nanotubes dispersed in polystyrene thin films through surface grafting polymerization, Materials Chemistry and Physics, Vol. 94, Is. 2-3, 438-443.
  • 12. Lin Y., (2002), Functionalizing Multiple-Walled Carbon Nanotubes with Aminopolymers, Journal of Physical Chemistry B, Vol. 106, No. 6, 1294–1298.
  • 13. Mago G. (2008), Effect of Functionalization on the Crystallization Behavior of MWNT-PBT Nanocomposites, Mater. Res. Soc. Symp. Proc, Vol. 1056, 1-6.
  • 14. Mark K. (2005), Shear modification of HDPE-clay nanocomposites, United States Patent, No 6,884,834.
  • 15. Martynov M. A. (1972), Radiography of polymers, Moscow, Khimiya.
  • 16. Wanderlich B. (1976), The physics of macromolecules, Moscow, Mir.
  • 17. Yang J. (2004), Fabrication and Characterization of SolubleMulti-Walled Carbon Nanotubes Reinforced P(MMA-coEMA) Composites, Macromol. Mater. Eng, Vol. 289, 828–832.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0062-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.