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Abstract: This paper considers cylindrical bending of the plate containing a crack parallel to plate’s faces. The analytical 
model of the problem is obtained using the improved theory of plates bending, which considers transverse deformation 
of the plate. Received analytical results are compared with the numerical data of the boundary element approach,  
which is modified to suit the considered contact problem. The results of analytical and numerical techniques are in a good 
agreement both for the isotropic and anisotropic plates. 

 

1. INTRODUCTION 

The problem of analysis of thin plates weakened 
by cracks is especially important in the case of composite 
materials, due to the possibility of interlayer delaminating. 
However, crack growth parallel to the median surface 
of plate is less dangerous than the perpendicular crack 
growth, the problem of analysis of such element is still 
actual. This problem is studied in the monographs by 
Panasyuk et al., (1975), Marchuk and Homyak (2003), 
Serensen and Zaytsev (1982), Cherepanov (1983), etc. 
Some of the problems for edge cracks are solved by nu-
merical methods. One can see them in the well-known 
handbook edited by Murakami (1987). In the study of 
Gnuni and Yegnazarian (2002) stability and bending prob-
lems of thin plates containing internal cracks are examined 
under the classical bending theory conditions. In the present 
work, the problem of cylindrical bending of plate with 
internal crack is solved basing on the equations of the im-
proved theory of the middle thickness plate bending 
(Shvabyuk, 1974). The influence of transversal anisotropy 
and length of the crack on stress and displacement of the 
plate is studied. 

2. STATEMENT OF THE PROBLEM.  
BOUNDARY CONDITIONS 

Cylindrical bending of the plate of a thickness 2ℎ 
is considered. The plate is hinge-supported on the edges 
� = ∓�. The plate is weakened by a symmetric tunnel 
internal crack (at −� ≤ � ≤ �), which is placed at the depth 
of � = ℎ − ℎ�  parallel to the median surface (Fig. 1). 

The plate is bended with the uniform load �, which 
is applied at the outer surface � = −ℎ. To solve the stated 
problem one can utilize the technique (Gnuni and Yeg-
nazarian, 2002), according to which the plate is formally 

decomposed into two domains with different bending ri-
gidities: the domain containing a crack, which cylindrical 
rigidity equals the algebraic sum of rigidities of the upper 
and lower plate elements: 

1 1 1D D D Dδ− += + =  

( 2
01 3 3 , 2h hδ β β β= − + = ); 

(1) 

and a domain without a crack, which cylindrical rigidity (1) 
equals �� = � = 2�ℎ�/3(1 − ��). Thus, ��

� = �	(2ℎ −
ℎ�)

�/12 = (1 − 
)�� is a rigidity of the upper plate part 
over the crack; and ��

� = 
�� is a rigidity of the lower 
plate part under the crack; �	 = �/(1 − �)�; � is an elastic-
ity modulus; � is a Poisson ratio. 

 

 
Fig. 1. Scheme of plate loading 

It should be noted that the used technique can be applied 
in cases, when the plate model does not take into account 
the transverse compression, i.e. when vertical displace-
ments do not depend on the transverse coordinate �. Within 
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this technique it is impossible to determine the real normal 
stress ��, which act in the upper and lower parts of the plate 
over and under the crack, respectively. Therefore, hence-
forward (with the use of equations (1), (2)) a model 
of plates of medium thickness (Shvabyuk, 1974), which 
utilize the improved equations of bending, is used. Corre-
sponding equations for the vertical displacement �(�, �) 
and normal stress �� allow studying the stress-strain state 
more precisely and satisfy the boundary conditions for each 
part of the plate both on the domains’ interface and on the 
faces of the plate. 

Assume that the contact pressure 
, which acts on the 
crack faces is constant along the whole crack and such that 
it can be obtained using the displacement of the middle 
surface ��  of the lower part of the plate under the crack 
by classic formula for deflection under cylindrical bending: 

 = ��

���

	
. For the upper part of the plate and for the 
whole cracked domain this equation can be written through 
corresponding displacements �� and � in the following 
form: � − 
 = ��

���
	
 and � = (��

� + ��
�)�	
 = ���	
. 

Neglecting on this stage of the transversal compression 
(�� = �� = �) one can obtain an approximate equation 
for contact pressure 
 on the crack faces: 

3
1

2
1 1 1 3 3

D q q
p

D D

β
β β

−

+ −= =
+ − +

. (2) 

Taking into account that �� = −
 and substituting 

 = 1/2(1 − �/ℎ) in the equation (2) one can obtain ex-
pression for contact stress �� as a function of transversal 
coordinate �: 

( )3
2 2

/ 1

2 (1 3 / )
z

z hq

z h
σ

−
=

+
. (3) 

For estimation of stress-strain state of the plate, equa-
tions of improved model of transtropic (transversally-
isotropic) plates (Shvabyuk, 1974), which take into account 
both the transverse shear and transverse compression, 
are used: 

( )

IV 2 II 4 IV
2 1 2 2 2

II II I
2 1

,

,    1 ,

i i i i i i i

і i i i i

D w q h q h q

K w q Eu qτ

ε ε

ν ν

= − −

′ ′′= − = − +
 (4) 

where: �
 = � = ��	 , � = 2ℎ�/3, �� = 4��ℎ/3, �
� = ��, 
�
� = −0,5��, �
, �
 ,	�
�,	ℎ
 = �, �, ��,	ℎ for the domain 
|�| > �; �
, �
 ,	�
� = ��, ��,	���; �
� = ��� =
(���ℎ − ℎ�� − ��)/2 = −(
 + ��)/2; �
� = ��� = �� +
���ℎ	 − ℎ�� 	≡ 	�� − 
	 = 	�(1 − (
�/(1	 − 	3
 + 3
�))); 

 = ℎ�/2ℎ; �
 = ��

� = ��
��	 ; ��

� = 2ℎ(1 − 
)�/3; 
ℎ� = ℎ�

� = (1 − 
) or �
 = ��
� = ��

��	 , ��
� = ℎ�

�/12; 
�′� = 2�′ℎ�/3; �
� = ��� = −0,5
; �
� = ��� =
�
�/(1	 − 	3
 + 3
�); �
, �
 ,	�
� ,	ℎ
 = ��, �� ,	���,	ℎ�/2 
for the domain |�| ≤ �; �� = 1/20�1 − ���	/�′, �	 =
�/(1 − ��); � = 0,5�����/�; �, �′, �′, ��� are elastic 
moduli and Poisson ratio of plate material in the longitudi-
nal and transverse (with primes) directions; �� = � 
is a distributed load applied to the upper surface of the plate 
(� = −ℎ); � is a horizontal displacement of the median 
surface of the plate; �,	�� 	are total and shear components 
of vertical displacement of plat median surface; Roman 

numeral superscripts of �, ��, � and ��, �� denote 
the order of derivative by the variable �; subscripts “u” 
and “l” denote respectively upper and lower parts of the 
plate at the cracked domain; 2ℎ is a height of cross-section 
of the plate; ℎ� is a thickness of the plate part which 
is under the crack. Further, the case of �� = 0 is consid-
ered. 

Expressions for stresses ��, �� and displacements 
�(�, �), �(�, �) of the plate outside the cracked domain, 
according to this model are as follows (Shvabyuk, 1974): 

( )
( )

2 2
2

2 2

2

0.6
0.5 ;

3 1

x x
x

N M
z

h I

z z h G G
q q h

I G E

σ

ν
ν

= +

− ′  ′′ ′′+ − −  ′ ′−     
3

1 23

1
3 ;

4z
z z

q q
h h

σ
 

= + − ⋅ 
 
   

1
1

( ),
2

q q q+ −= −   2 ( );q q q+ −= +  

( ) ( )2
32

2

( , ) ( )

1
1 1 ;

83

U x z u x

dw dqdw z
z z

dx dx E h dxh

τ α
α

=

   −
 − − − − + 

   ′    

2 2
0 21

0 2

( , ) ( )

2 ( ),
2 8

W x z x

qq d w z
z A B z

E E hdx

αα

=

⋅′+ ⋅ + ⋅ ⋅ + ⋅
′ ′

w

 

(5) 

where: 
4

2
2 3 2

( ) 6 ;
z

B z A z A
h

= −   ;
(1 )

A
ν

ν
′′′ =

−
  

0 0.5 ,Aα ν ′ ′= − ⋅  2 21.5 / ,w w q h Eε= + %%  2
0

1 ;
2

A E
A

Gα
′ ′

= +
′

 

3 2
04

v A E
A A

Gα
′′ ′ ′

= − ; 
2

2
1 22

h

x x
h

d w
M z dz D h q

dx
σ ε

−
= = − −∫

%
, 

x
dw

Q K
dx

τ′= , 12 2
h

x x
h

du
N dz Eh A hq

dx
σ

−

′= = +∫ %   

are a bending moment, transverse and longitudinal forces 
in the plate; u is a tangential displacement of median sur-
face of the plate.  

The system of equations (4) is solved separately 
for each domain of the plate. Herewith, the corresponding 
boundary conditions are satisfied joining the solutions 
for each section, and the conditions of problem symmetry 
are taken into account. 

In particular, for the domain |�| > � the following rela-
tions hold: 

( )2 4
0 2 / 24 ;w C C x qx D= + +  

( ) ( )2
0/ 2 ; 1 /(2 )w C qx K u qx E Rτ τ ν ν′ ′′= − = + +  

(6) 

For the domain |�| ≤ �, if it concerns the lower part 
of the plate under the crack, which face is loaded with 
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the normal stress ���ℎ − ℎ�� = −���/(1	 − 	3� + 3��), 
the displacement (3) are as follows: 

( )2 4
0 2 2 1/ 24 ;l l l lw C C x q x D−= + +  

( )2
2 1 0/ 2 ;l l l l l lw C q x K u R x Rτ τ ′= − = +  

(7) 

Here constants 
�,
�,
�,��,
��,
��,
�� ,��,��� are ob-
tained using the boundary conditions on the edge � = � 
of the plate: 

( ) ( ) ( ) ( )0;x x xw a M a N a Q a qa= = = = −
 

(8) 

and joining the solutions on the cracked domain boundary 
� = � for upper and lower parts of the plate, which are 
studied as separate objects, loaded (except external loading) 
with additional surface contact pressure 
 in the cracked 
domain. For example, for the lower part of the plate:  

( ) ( ) ( ) ( )
( ) ( ) ( )

0

0 0

0

, / 2 ; , / 2 ;

, / 2 , ; ,

l l

h
x x x xh h

w l W l h h u l U l h h

l h l h N l dzσ σ σ− −
−

= − = −

= = ∫
 (9) 

where: 

( )
( )

( )

0

2 2
0 2

2 2 0

,

( ) 0.15
0.125 ;

3 1

x x
x

l l

N M
x z z

h I

z z h G G
q q h

G EI

σ

ν
ν

− −
− − −

−

− −

−

= +

− ′  ′′ ′′+ − −  ′ ′  −

 

0 0 1;x l lN h Eu h A q− ′ ′= +% 2
1 1 0 20.25x l lM D w h qε− − ′′= − −% ; 

( ) ( ) 2x x uQ l Q l q l− = + , ( )xQ l ql= − ; 0 / 2z z h h− = − +   

is a thickness coordinate of the lower plate part under 
the crack. 

Satisfying the boundary conditions (5), one can obtain 
the factors 
�,
�,
� along with the equations for the bend-
ing moment �� and displacements � and �� in the un-
cracked domain: 

( ) ( )
( ) ( )

4 2 2
0 1

2 2
2 1

5 / 24 / 2 ,

/ 4 / 2 ,

C qa D q a h D

C qa D q h D

ε

ε

= +

= − −
 

2 2 2
1(1 2 / ) /(2 )C qa h a Kτ ε ′= + ; 

2 2( ) / 2xM q a x= − ;  ( )xQ x qx= − ; 

( )
( ) ( )

4 4

2 2 2 2 2
1

( ) / 24

(1 2 / ) / 4 ;

w q x a D

qa a x h a Dε

= −

+ − +
 

( )2 2 2 2
1(1 2 / ) /(2 ) / 2w qa h a K qx Kτ ε ′ ′= + −  

(10) 

Utilizing conditions (6) one receives the rest of un-
known factors: 

( ) ( )2 4
0 0 2 2 1, / 2 / 24l l lC W l h h C l q l D−= − − − ;  

( ) ( )2 2
2 2 1 2 0 1(2 0.5 ) / 4 ;l lx l lC M l q l q h Dε −= − + +  

( )
2 2 2

0 1 12 2 2

3
2 1

4 42 3

A q qla l h ql
R R l f

GE Eh a a
ε β

 ′ = − + − − +     ′   
% %

( ) ( )1 0 1/ / ;lx lR N l Eh A q E′= −% %   2
2

;l l
l

D
C C

Kτ
−

= −
′

 

0 0;lR =   ( ) ( )2(1 )[3 1 (1 )]f β β β α= − − − − ; 

( ) ( )

( )( )

( ) ( )

( )

( ) ( ) ( ) ( )
( ) ( )

0

2 2
2

12 2

0 1 2 2

32

2

2

, / 2

3 1 1 2
8

1 [8 ] ;
8

( ) 1
;

2(1 2 )

/
3 1 / ;

4 1x x

W l h h w l

l a qh

Eh h

qh
f A A

E

E
A

G

G G qh
N l M l h f

ν ν β ε

α β β

ν β
ν ν ν

ν
β β β

ν
−

− =

 
′′+ + − − − 

 
 

− − − −
′

′′ ′−
=

′ ′′− −
′ ′′−

= − −
−

%

%

( ) ( ) ( )
( )( ) ( )

2 2
0 0

2
0 2

/ 6 0.25 /

0.2 / / 6 1 ;

x x x

l

M l N l h M l h h

h q q G G ν ν

− −= − +

′ ′′+ − − −
 

( ) 2
1 (1 )(5 2 )]f β β β β= − + − ; 

( ) ( )2 2
2 (1 2 ) 2 2 0.1 0.1f β β β β= − − − + . 

(11) 

3. BASIC EQUATIONS 

Thus, proceeding from equations (6) – (8) the resultant 
forces and bending moment for the part of plate under 
the crack are as follows: 

( )xN x− = ( )xN l− ;  ( ) 2x lQ x q x− = − ;   

( ) ( ) ( )2 22

2
l

x x
q

M x M l l x− −= + −  

(12) 

Taking into consideration that the longitudinal forces 
in the plate parts above the crack and under the crack  
(� ≤ �) are equal in magnitude and are opposite in sign 
��

���� = −��
�(�), the value of the boundary bending mo-

ment ��
�(�) for the upper plate part � ≤ � is obtained from 

the boundary condition of equality of normal stresses on the 
outer (� = −ℎ) surface of the plate: 

( )( ) ( ), 1 ,x xl h l hσ β σ+ − − = −  (13) 

Thus, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

22
2

1 / 3 1

0.4 1 3 1 .

x x x

u

M l N l h M l

G
h q q

G

β β

β ν ν

+ −= − − + −

 ′′+ − − − − ′ 

 (14) 

Together these quantities have to satisfy the equation 
of the moments’ balance in the plate at the cracked domain 
(Fig. 1b): 
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( )xM l+ + ( )xM l− + ( )xdN l− = ( )xM l . (15) 

Here � is a distance between the points of application 
of longitudinal forces to the transverse crosscuts of the plate 
parts; � = ℎ for the linear distribution of the normal 
stresses 	�. 

It should be noted that the equation of the moments bal-
ance (12) includes a term, which takes into account the 
influence of longitudinal forces and which was not taken 
into consideration by G.P. Cherepanov in his “general the-
ory of delaminating of the multilayer shells” (Cherepanov, 
1983, p. 267). It was explained by the fact that the distance 
� was considered to be less then the linear size of the crack 
(� ≪ �). 

At the same time an account of the longitudinal forces 
��

����, acting in the transverse cross-section of the upper 
and lower plate parts, allow, under the condition of static 
equilibrium of plate part, which is “cut” along crack plane, 
and on its extension, to determine the shear (tangent) force, 
acting at the extension of the crack:  

( ) ( )0a
xz xl

T l dx N lτ −= =∫ . (16) 

where 
��
� = −3��1 − ����/ℎ is a “background” stress 

acting on the horizontal cross-section of the plate without 
a crack but on its depth. 

Approximate value of stress intensity factor (SIF) 
�� 
can be determined by the formula: 

( ) ( ) ( )0
II 2 3 2 1 x

xz
Q l

K l l l
h

τ π β β π= = − − . (17) 

Maximal (� = 0) normal displacements ��  (without ac-
count of compression), as well as a stress 	�, that appear 
on the external and internal surfaces of the lower plate part 
can be written as follows:  

( )2 2 2 2 24 1

2

2 2 2 4
1

2,4 /5

24 1 3 3

2.4 (1 ) / 1 ;

l

h aqa
w

D

h a

θ ε β θ

β β

ε θ θ

 +
=
 − +

+ − + −


  

( )

( )
( )

2 2
2

0 2 2

3 1 4 3
0, / 2 1

4 1 3 3

/1
;

5 1

x
a

h q
h

G G
q

β βσ θ
β β

ν
ν

−  − += − 
 − + 

′ ′′−
+

−

 (18) 

( )

( )
( ) ( )

2
2

0 2

2

22

3
0, / 2 [(1 2 )(1 )

4

/1 1 4
] .

4 1 51 3 3

x
qa

h
h

G G
q f

σ β θ

νβθ β
ν ββ β

− − = − −

′ ′′−  
− − + −− +  

  

In the case, when the crack is placed along the median 
surface of the plate (� = 0,5; 	ℎ� = ℎ), edge bending mo-
ments ���(�), ���(�) and longitudinal force ���(�), acting 
at the edges of plate parts in the cracked domain, are ex-
pressed through the bending moment ��(�) of the whole 
plate by the following formulas:  

 
 

( )xM l− = ( )xM l+ =
1

8
( )xM l +

( )
( )

2 /

48 1

G Gqh ν
ν
′ ′′−

−
; 

( ) 3

4xN l− = ( )xM l / h
( )

( )
/

40 1

G Gqh ν
ν
′ ′′−

−
−

 
(19) 

Consider an extreme case, when the crack is located on 
the median surface of a plate. Formulas for maximal normal 
stresses (in the cross-section � = 0) on the internal 
and outer surfaces of the plate parts, divided by the crack, 
take the following form: 

( ) ( ) ( )
( )

2
2

2

/3 1
0, 1

4 5 1x
G Ga

h q q
h

ν
σ θ

ν
′ ′′−

± = ± + ±
−

 

( ) ( )
( )

2
2

2

/3 1
0, 0

2 4 1x
G Ga

q q
h

ν
σ θ

ν
′ ′′−

=
−

m m m  

(20) 

where � = �/� is relative length of the crack; upper and 
lower signs of notations “±” and “∓” in formulas (17) 
correspond to the outer surfaces of the lower and upper 
parts of the plate, respectively. Stress 	�(0, ∓0) acts on the 
internal surfaces of the plate parts located under (sign “–”) 
and above (sign “+”) the crack. 

Maximal displacement of the median surface 
of the lower part of the plate can be written in the following 
form:  

( )

4 2
4 2

2

2
2 2 0

1 2

5
1 3 0.3 (1 )

24

2.4 1 0.25 / ,
16

l
qa h

w A
D a

qhBh
A h a

Ea

θ θ

αε


′= + − −




′+ − −

′

%

 (21) 

where 0
1

,
2 1

ν να
ν

′ ′′
= −

−
 

(46 / / )
5.125

16(1 2 )

E G E G
A

ν ν
ν ν ν

′′ ′ ′ ′′ ′+= −
′ ′′− −

% . 

In expression (18) terms with multipliers ℎ	/�	 and ��  
are corrections to the classical thin plate theory, that take 
into account transverse shear and compression. Assuming 
that they are zero ones, one can obtain the simplest ap-
proximate expression for calculation of the vertical dis-
placement of a thin plate containing a crack at its median 
surface: 

( )
4

45
1 3

24l
qa

w
D

θ= + . (22) 

If the cylindrical stiffness � in the latter equation is re-
placed with the value ��, one obtains the formula 
for a vertical displacement of the beam of a constant section 
containing a crack along the middle line. However, this 
expression is not precise enough for thick plates and short 
beams, especially those made of composite materials. 
In this case it is necessary to use the complete formula (18) 
along with the correspondent expression (2) for displace-
ment �, utilizing certain corrections for parameters �
, �	 
and ℎ. 

This problem can be also solved using a hypothesis 
based on one of the Timoshenko-type theories (taking into 
account the expression for 	�). However, in this case for-
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mulas (15) – (17) don’t contain second term, which ac-
counts the influence of transverse shear and compression 
on the nonlinearity of distribution of the normal stress 	�. 
Correction, which accounts the transverse shear and com-
pression, in formulas (15) – (17) is a constant value, though 
it is not constant for stresses on the external and internal 
surfaces of the parts of the plate and it also depends on the 
plate material. 

4. NUMERICAL MODELING OF THE PROBLEM. 
DUAL BOUNDARY ELEMENT METHOD 

Numerical modeling of the considered problem is used 
for verification of the obtained results. Dual boundary ele-
ment method (Portela et al., 1992) for the plane elastostatics 
is utilized for this purpose. It is well-known that classical 
boundary element method degenerate when considering 
crack problems due to the lack of equations considering 
load of crack faces (Portela et al., 1992). Therefore, the 
dual boundary element method (Portela et al., 1992) was 
developed, which proceed with a system of 2�-equations 
basing on Somigliana identity: � displacement equations 
(as in classical BEM) and additionally � stress equations 
obtained from the Somigliana identity by differentiation. 
Thus, for the problems of cracks theory, dual BEM integral 
equations take the following form (Portela et al., 1992): 
− for collocation point “�” placed on a smooth surface Γ 

of a solid – 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )

1
,

2

,

, ( )

, ( ) ;

C

C

i ij j

ij j

ij j

ij j

u U t d

T u d

U t d

T u d

+

+

Γ

Γ

Γ

Γ
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− Γ

+ Σ Γ

− ∆ Γ

∫

∫

∫

∫

y x y x x

x y x x

x y x x

x y x x

 (23) 

− for collocation point “�” placed on a smooth surface 	Γ�
� 

of a crack: 
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+ Σ Γ
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y x y x x

x y x x

x y x x

x y x x

y x y y x x

x y y x x

x y y x x

x y y x x

 (24) 

Here � is an arbitrary point of the surface; ��
 , ��
 , ��
� , 
��
�  are the singular and hypersingular kernels of integral 
equations for plane problem of elasticity, which are explic-
itly written in Portela et al. (1992), ��, �� are the compo-

nents of displacement and traction vectors; ∆�� = ��
� − ��

�, 
∆�� = ��

� − ��
�, ∑�� = ��

� + ��
�, ∑ �� = ��

� + ��
�; �


� are the 
components of a unit normal vector to a surface Γ�

�; signs 
“+” and “-“ denote the values concerned with the surfaces 
Γ�
�  and Γ�

�, formed by a cut Γ�. Subscripts in notations 
correspond to the projections of vectors on the axis 
of global coordinate system O�
�	. Einstein summation 
convention is assumed. Kernels of integral equations for the 
plane problem elasticity at � → � possess the following 
singularities: 

��
�x, ��~ ln|� − �| , 			��
�x, y�~ 1/ln|� − �| 

��
��x, ��~ 1/ln|� − �| , 			��
���, ��~ (1/ln|� − �|)	 

(25) 

For modeling of closed cracks, the equation (20) should 
be modified with account of additional conditions of zero 
value of normal displacement discontinuities and shear 
contact stresses on the mathematical cut Γ� as follows: 

( ) ( ) ( )1 0
C

n j ju u
∈Γ

∆ = Ω ∆ ≡
y

y y y

( ) ( )2 0
C

j jtτ
∈Γ

= Ω ∆ ≡
y

y y
    

( ) 0
C

jt
∈Γ

Σ ≡
y

y  

(26) 

Here components of rotation tensor Ω of the vectors 
equal: 

( ) ( )11 1nΩ =y y ,   ( ) ( )12 2nΩ =y y ,  

( ) ( )21 2nΩ = −y y , ( ) ( )22 1nΩ =y y  
(27) 

Thus, equation (21) on a mathematical cut Γ� should 
be solved for the unknown discontinuities ∆�� =
Ω	
���∆�
(�) of tangent displacement and normal contact 
stress "� = −1/2Ω

���∆�
(�). Proceeding from this, the 
following system of integral equations can be obtained: 
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Γ Γ

Γ
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Γ Γ

Γ
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
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= − Γ + Γ


+ Ω ∆ Γ 

= Ω Γ + Γ


+ Ω ∆ Γ 

∫ ∫

∫

∫ ∫

∫

∫ ∫

∫

y y

x y x x x

y y y x

x y x x x

y y x

x y x x x

(28) 

The following numerical solution procedure for integral 
equations (20), (25) using the dual BEM is proposed. For 
evaluation of curvilinear integrals, curves Γ, Γ� are divided 
into parts, which are approximated with the rectilinear sec-
tions Γ� (boundary elements). Thus, equations (20), (25) are 
written as sums of integrals along boundary elements Γ�.  
� nodal points ��,�(" = 1,�#####) are set on each element Γ�. 
As a rule, discontinuous boundary elements (Portela et al., 
1992), i.e. elements with no node placed at the end point 
of a boundary element, are used to solve crack theory prob-
lems.  
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Particularly, often used are rectilinear quadratic bound-
ary elements with three nodes placed as follows: one in the 
center and the other two at the distance of 1/3 of element 
length from the central point. This allows modeling of the 
non-smooth surfaces, because collocation point never coin-
cide the corner or a brunching point of a cut Γ�. Boundary 
functions ��, ��, "�, ∆�� are interpolated on element Γ� 
using their node values as follows: 

( ) ( ), , , ,

1

, , , , , ,
n

q p q p q p q p p
i i n ni i

p

t u p u t u p uτ τξ φ ξ
=

 ∆ = ∆    ∑% % % %  (29) 

( ) ( ),

1

n
q p p

i i
p

u uξ φ ξ
=

= ∑%  (30) 

where $ is a parameter of a point position at the boundary 
element, defined on the interval −1 ≤ $ ≤ 1: �Γ� =

(%�/2)�$ = &��$, &� is a Jacobian of a variable change on 
Γ�. For a rectilinear quadratic discontinuous boundary ele-
ment (� = 3 the values of the parameter  $ = {−2/3; 0; 
2/3} correspond to its nodes ��,�. Thus, interpolation poly-
nomials '�($) are expressed as follows: 

1 9 3

8 4
φ ξ ξ = − 

 

2 3 3
1 1

2 2
φ ξ ξ  = − +  

  

3 9 3

8 4
φ ξ ξ = + 

   

(31) 

Thus, the system of singular integral equations is re-
duced to a system of linear algebraic equations, which 
is sought for the nodal values of boundary functions. Ob-
tained solutions of the integral equation system are used 
for calculation of stress 	�/�, displacement �( = ���/

(2�ℎ) and stress intensity factor (SIF) 
��
∗ = 
��/√*�. 

5. NUMERICAL RESULTS 

Analysis of numerical results of plane problem of elas-
ticity and formula (17) for stresses 	� allows to state that 
the growth of crack in a plate causes the increase of stresses 
in parts of the plate according to formulas (17) in compli-
ance with quadratic parabola law, while plane elasticity 
behaves according to the rule close to hyperbola law. One 
can see that in the second case the growth is much slower. 
Therefore, formulas (17) should be modified by replacing 
parameter �	 with parameter �� and written in the follow-
ing form: 

( ) ( ) ( )
( )

2
4

2

/3 1
0, 1

4 5 1x
G Ga

h q q
h

ν
σ θ

ν
′ ′′−

± = ± + ±
−

 

( ) ( )
( )

2
4

2

/3 1
0, 0

2 4 1x
G Ga

q q
h

ν
σ θ

ν
′ ′′−

=
−

m m m  

(32) 

To prove that such modification is reasonable, the val-
ues of stress 	�

�/q on the outer surface of the lower part 
of the plate is evaluated utilizing formula (17) and formula 
(28), placed in a separate column in bold font (for � = 0 
and � = 1 they are the same), and using dual BEM 

for plane problem of elasticity (in brackets). These results 
are presented in Tables 1 and 2. 

Tab. 1. Stress values in isotropic plate 

a

h
 

/x qσ −  (isotropy) 

0θ =  0.5θ =  1θ =  

5 
18.95  

(18.85) 
23.64  

(20.58) 
20.12 

37.7  
(38.6) 

10 
75.20  

(75.00) 
93.95  

(81.69) 
79.89 

150.2  
(152.6) 

20 
300.2  

(299.7) 
375.2  

(325.7) 
308.9 

600.2 
(610.4) 

Tab. 2. Stress values in transtropic plate 

a

h
 

/x qσ −  ( wood) 

0θ =  0.5θ =  1θ =  

5 
21.52 

(21.03) 
22.69  

(22.69) 
40.27  

(38.30) 

10 
77.77  

(76.51) 
82.46  

(83.35) 
152.8  

(148.6) 

20 
302.8  

(301.7) 
321.52  
(328.7) 

602.8  
(596.3) 

The value of contact pressure on crack faces, which 
is determined by stress 	� completely coincides with corre-
sponding numerical results of the plane problem of elastic-
ity along the whole length of the cracks except a small area 
near the crack tips. 

Fig. 2 shows plots of stress 	�/� versus the transverse 
coordinate �/2ℎ for parameters � = 0,5 and � = 0,9, 
at �/ℎ = 10, obtained using the improved formulas (28) 
(solid line), and the dual boundary element method of plane 
problem of elasticity (dashed line). Dash-dot line presents 
the corresponding plot for plate without a crack. Data, ob-
tained by dual BEM of plane problem of elasticity, 
are presented in Fig. 2 in brackets. 

Data analysis for stresses, presented in Tab. 1 
and in Fig. 2 for isotropic and transtropic (wood) materials, 
prove that formulae of applied theory of medium thickness 
plates are quite precise (in comparison with numerical data 
of plane elasticity, the error is less than 2.5%) and conven-
ient for calculations.  

Analysis of formulas (15) – (19) shows that growth 
of crack length increases stresses and displacements in the 
plate up to the values which can appear in two separate 
plates put one onto another without friction. Then the 
stresses in them will increase twice and displacements 
in four times. Corrections, which account transverse shear 
and compression, are insignificant for stresses in case 
of isotropic material. At the same time these corrections 
may be important for transtropic materials (fiberglass plas-
tics, wood, etc.). For example, for wood (+/+′ = 10; ,�� =
, = 0,3), when �/ℎ = 0,5; 	� = 0,5, errors of classical 
theory for the first and second formulas are as big as 12% 
and 37%, respectively. These errors are even bigger, when 
determining the maximal vertical displacement � ≅ �� . 
See comparative table for relative displacements  
�( = ���/(2-ℎ) below (Table 2). 
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Fig. 2. Plots of stress �

�
/� against the transverse coordinate �/2ℎ 

Tab. 3. Values of vertical displacements for isotropic plate 

a

h
 

( )/ 2lw w E qh=%  ( isotropy) 

0θ =  (p.p.) 0θ =  0.5θ =  (p.p.) 0.5θ =  1θ =  (p.p.) 1θ =  

5 100.8 96.85(88.87) 105.4 114.3(105.5) 384.9 365.5 

10 1459 1454(1422) 1522 1723(1688) 5917 5728 

20 22.86·103 22.88·103 23.79·103 27.15·103 94.13·103 91.16·103 

Tab. 4. Values of vertical displacements for wooden board 

a

h
 

( )/ 2lw w E qh=%  (wood) 

0θ =  (p.p.) 0θ =  0.5θ =  (p.p.) 0.5θ =  1θ =  (p.p.) 1θ =  1θ =  (cl.) 

5 184.9 184.3 192.6 201.5 446.7 452.9 355.5 

10 1755 1805 1840 2073 5910 6078 5688 

20 24.01·103 24.28·103 25.10·103 28.56·103 90.92·103 92.56·103 91.0·103 

 
Data in Tables 3 and 4 in brackets present the displace-

ments calculated according to the simplified formula (16) 
for thicknesses �/ℎ = 5; 10 without account of transverse 
shear and compression. These data are shown in the last 
column of Table 3 and are the same both for transtropic 
(wood) and for isotropic materials. Values, calculated using 
the dual boundary element method of plane problem 
of elasticity, are put into columns (p.p.). The laws of maxi-
mum result deviation of displacements �( , calculated using 
the applied theories of plates, are similar to those detected 
while stress calculations. Thus, the real character of dis-
placements growth in a plate caused by crack length in-
crease are, in fact, much slower than it is determined by the 
formulas of applied theories of plates. This is of special 
importance for the following values of parameter �: 
0,5 ≤ 	� ≤ 0. 

6. CONCLUSION 

This paper obtains the analytic dependences convenient 
for engineering applications and calculation of stresses and 
displacements in isotropic and transversally-isotropic 
plates, damaged by horizontal cracks. These results allow 
predicting with enough practical accuracy the strength 
and rigidity of plates using the geometrical parameters 
of a crack in a plate, as well as physical characteristics 
of material and its transversal anisotropy. 
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