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Abstract: This paper considers cylindrical bending of theteoleontaining a crack parallel to plate’s facese Emalytical
model of the problem is obtained using the improttegory of plates bending, which considers trarsvateformation
of the plate. Received analytical results are coegawith the numerical data of the boundary elemapproach,
which is modified to suit the considered contaaibpem. The results of analytical and numerical méghes are in a good

agreement both for the isotropic and anisotropitgsl.

1. INTRODUCTION

The problem of analysis of thin plates weakened

by cracks is especially important in the case ahposite
materials, due to the possibility of interlayeratalnating.

However, crack growth parallel to the median swefac

of plate is less dangerous than the perpendiculackc
growth, the problem of analysis of such elementtif

actual. This problem is studied in the monograplgs b
Panasyuk etal.,, (1975), Marchuk and Homyak (2003),
Serensen and Zaytsev (1982), Cherepanov (1983), etc

Some of the problems for edge cracks are solvediby

merical methods. One can see them in the well-known
handbook edited by Murakami (1987). In the study of

Gnuni and Yegnazarian (2002) stability and bendirap-
lems of thin plates containing internal cracks examined
under the classical bending theory conditionshinpresent
work, the problem of cylindrical bending of plateithw
internal crack is solved basing on the equationthefim-

proved theory of the middle thickness plate bending

(Shvabyuk, 1974). The influence of transversal @nipy
and length of the crack on stress and displacemktite
plate is studied.

2. STATEMENT OF THE PROBLEM.
BOUNDARY CONDITIONS

Cylindrical bending of the plate of a thickne2h
is considered. The plate is hinge-supported onetthges

x = +a. The plate is weakened by a symmetric tunnel

internal crack (at-l < x < l), which is placed at the depth
of z = h — h, parallel to the median surface (Fig. 1).

The plate is bended with the uniform logd which
is applied at the outer surfage= —h. To solve the stated
problem one can utilize the technique (Gnuni andy-Ye
nazarian, 2002), according to which the plate isnfdly
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decomposed into two domains with different bendiig
gidities: the domain containing a crack, which wgilical
rigidity equals the algebraic sum of rigidities tbhe upper
and lower plate elements:

D,=D; +D; =4D
1)
(0=1-38+36%,B=hy/ D);

and a domain without a crack, which cylindricalidity (1)
equals D, = D = 2Eh3/3(1 — v?). Thus, D = E(2h —
ho)3/12 = (1 — B)3D is a rigidity of the upper plate part
over the crack; and; = 3D is a rigidity of the lower
plate part under the crack;= E/(1 — v)?; E is an elastic-
ity modulus;v is a Poisson ratio.
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Fig. 1. Scheme of plate loading

It should be noted that the used technique carppkeal
in cases, when the plate model does not take itttoumt
the transverse compression, i.e. when vertical laisp
ments do not depend on the transverse coordinatéthin



this technique it is impossible to determine thal reormal
stresso,., which act in the upper and lower parts of thaela
over and under the crack, respectively. Therefbemce-
forward (with the use of equations (1), (2)) a nlode
of plates of medium thickness (Shvabyuk, 1974), cWwhi
utilize the improved equations of bending, is usédrre-
sponding equations for the vertical displacem@fix, z)
and normal stress, allow studying the stress-strain state
more precisely and satisfy the boundary conditfongach
part of the plate both on the domains’ interfacd an the
faces of the plate.

Assume that the contact pressprewhich acts on the
crack faces is constant along the whole crack aot that
it can be obtained using the displacement of thddtai
surfacew, of the lower part of the plate under the crack
by classic formula for deflection under cylindridgsnding:
p = Dyw}V. For the upper part of the plate and for the
whole cracked domain this equation can be writteaugh
corresponding displacements, and w in the following
form: g —p = Dfwl and q = (D + DP))wW!Y = sDw'V.
Neglecting on thls stage of the transversal congwas
(w; = w, =w) one can obtain an approximate equation
for contact pressure on the crack faces:

__ PFa
1-38+36°
Taking into account thav, = —p and substituting

B =1/2(1 —z/h) in the equation (2) one can obtain ex-

pression for contact stregg as a function of transversal
coordinatez:

q (z/h-1)°
og,=————"—.
2 (1+32% In?)

D q
D +Dg

p= ¥

®3)

For estimation of stress-strain state of the platpja-
tions of improved model of transtropic (transvessal
isotropic) plates (Shvabyuk, 1974), which take iatzount
both the transverse shear and transverse compmgssio
are used:

Dw" =g, -alfdy-eaf d%,

"(1+v)dy,

where:D; =D = IE, I = 2h%/3, K' = 4G'h/3, q;, = q~,
qi1 = —0,597, u;, wi, wir, hy = u, w, wy, h for the domain
|X| > l; U, Wi, Wiz = Uy, Wy Wyr, qi1 = Qu1 =
(oz(h—ho) —q7)/2=—-(+q7)/2} qz=qua=q +

(4)

Kiwy =62, Eul =-v

oz(h —hy) = q”—p = CI(1~—(33/(1 - 38 +3B%));
B = ho/2h; D; = Dif = IJ'E; = 2h(1-B)%/3;
hh=hif=(01-p) or D;=D; =I{E, I} =h3/12;
K'y =2G"hy/3; qi1 = 9 = —0,5p; iz = Q12 =

qﬁS/(l - Bﬁ + 3ﬁ2)1 Uiy, Wiy Wi, hi = U, WL! Wig, hg/z

for the domain |x|<1[; & =1/20(1—a)E/E', E =
E/(1-v?); a=0,5v"G'/G;, E, E', G', v are elastic
moduli and Poisson ratio of plate material in theditudi-
nal and transverse (with primes) directiong; =gq

is a distributed load applied to the upper surfaicine plate

(z = —h); u is a horizontal displacement of the median
surface of the platey, w; are total and shear components
of vertical displacement of plat median surface;maa
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numeral superscripts ofv, w;, u and q;, q, denote
the order of derivative by the variable subscripts “u”
and “I" denote respectively upper and lower partstie
plate at the cracked domai2k is a height of cross-section
of the plate;h, is a thickness of the plate part which
is under the crack. Further, the caseqdf= 0 is consid-
ered.

Expressions for stresses,, o, and displacements
U(x,z), W(x,z) of the plate outside the cracked domain,
according to this model are as follows (Shvaby@k4):

N My,
X 2h |
2 2
z(z —0.6h ) G
V" _O Ilh2_
3l (1-v) (G )(qz = E'j
1 z z3
O, =g += :
1 .+ - .
@=5@ -a) %= +q) (5)
U(x,2) =u(x)
2 1-a
g W 1—(1—a)z— +—( , )%23;
dx dx 312 8E'h dx
W(X%,2) =w(X)
+20'02B(L+A’dj WGZ—+ OmJZEIB(Z)
E' dx? 2 8Eh
where: B(z) = 6A222 - 2_4- LA
= AE'
ap=05-v'[A, W=w+1.5505h/E, =1+ :
0 202 A 20,G
" h 2~
VAE d“w 2
Ay - = | zoydz=-D—-gh"q,,
A=Ay 4a OG My __‘-h X a2 1 12
, dw, du
, Ny = d 2Eh—+2Ah

are a bending moment, transverse and longitudimrales
in the plate;u is a tangential displacement of median sur-
face of the plate.

The system of equations (4) is solved separately
for each domain of the plate. Herewith, the coroesiing
boundary conditions are satisfied joining the <doha
for each section, and the conditions of problem retny
are taken into account.

In particular, for the domaitx| > [ the following rela-
tions hold:

w=Co+Cox? +ax*/(24D);
(6)
=C, - x?/(2K'); u=v"(1+v)ax /(2E )+ Ry

For the domain|x| < [, if it concerns the lower part
of the plate under the crack, which face is loadéth
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the normal stresso;(h — hy) = —qB3/(1 — 38 + 352,
the displacement (3) are as follows:
W =Cio+Cx° +q 2X4/(24DI)?
)
- 2 e =
Wz =G — QX /(ZKI)' U =Rx+Rg
Here constantg, C,, C;, Ry, Cyg, Cp2, Ciz, Ry, Ryg @re ob-

tained using the boundary conditions on the edgea
of the plate:

w(a) =M, (a)=Ny(a)=0; Q(a)=-da (8)

and joining the solutions on the cracked domainniemy

x =1 for upper and lower parts of the plate, which are

studied as separate objects, loaded (except ekteating)
with additional surface contact pressyran the cracked
domain. For example, for the lower part of the glat

W (|)=W(I,h—ho/2); u (|):U(|,h—h0/2);

oy (1,19 /2) =0, (1,h); Nx_(l):j:—rbaxdz- 9)

where:

- -\ _ Ny My _
G'X(X,Z ):—X+—_Xz
ho

+

z ((z')2 —0.1Eh§) G
3

GI
—'_V" q _0.123]" hz—,),
317 (1-v) )( 2 Z0E
- _ = .1 ] . - _ -~ 2 .
Ny =hoEu +hoA'qy; My =-Dy W' —0.255hq 2;

QG ()= (1)+aual , &(1)=-al; z =z-h+hy/2

is a thickness coordinate of the lower plate partien
the crack.
Satisfying the boundary conditions (5), one carawbt

the factorsC,, C,, C, along with the equations for the bend-

ing momentM, and displacements and w, in the un-
cracked domain:

Co =5qa” /(24D) +q&a?h? /( D),

G :‘(2M|x(|)+Q|2|2+0-551Q|2h%)/(‘Di) ;

(g _Aa) 3da®( 1% o h® ) d
F?O—(Rl ZE)|+4Eh2[3a2 Zslaz l]+4G’f('B)
. S 2D”
R1:N|x(|)/(Eho)‘AQ|1/Ei C'Tz_T{C'Z;
Ro=0; f(8)=0-p)B-(1-8) a-a);
W(I,h=hy/2) =w(l)
. |2 2 h

a0 (1= B)B- a(B) Ao~ Aol (1)

V2 (1-B)°E
21-v-2V" )G’

Ny (1) =38(1- B)My (1) /-

A, =
(G/IG'-v")ah
4(1-v)
My (1)=-Ng (1)ho/6+0.28M, (1)h§ h?
+0.2¢ (a-q)(G /G -v") 16(1-v) ;

f(B)=@-B)E+28-57);

f2(B);

f2(8) = -2 (262~ 26- 03+ 0..

3. BASIC EQUATIONS

Thus, proceeding from equations (6) — (8) the tastl
forces and bending moment for the part of plateeund
the crack are as follows:

Nk (x)= N (1)5 Qx (X)=-azx;
(12)
M;(x):M;(|)+q'_2?(|2-x2)

Taking into consideration that the longitudinal des

C, =-ga’/(4D)-qe;h? /(2D), inthe plate parts above the crack and under tlaekcr
(x <1) are equal in magnitude and are opposite in sign
N7 (x) = —N,f (x), the value of the boundary bending mo-
mentM;! (1) for the upper plate paxt < [ is obtained from
the boundary condition of equality of normal stessen the

outer £ = —h) surface of the plate:

C, =qa’(1+25h? /a2) /(XK');
M, =q@2 -x%)/2; Q(x)=-ox; (10)

w=q(x*-a*)/(24D)

ox (1.-h(1-B)) =0, (1.-h) (13)
+0a? (a2 - x?)(L+ 2502 /a?) /(4D) hus
w, =ga’(1+25h? /a?) (2K')-gx? I XK') M; (1) = -(1- B)Ng (1)h/3+(1= B)2 My (1)
(14)

Utilizing conditions (6) one receives the rest of u 200 22 [ G _ . _
known factors: +0.40°(1- B)"(d-d2) c Y {Fv)
Together these quantities have to satisfy the émuat
of the moments’ balance in the plate at the cradadain
(Fig. 1b):

Cio :W(I,h—h0/2)—C|2I2—q|2I4/(24D1);

96



M (1) + M5 (1) + N (1) =My (1) (15)

Hered is a distance between the points of application

of longitudinal forces to the transverse crossofithe plate
parts; d = h for the linear distribution of the normal
stresseg, .

It should be noted that the equation of the mombals
ance (12) includes a term, which takes into accdhat
influence of longitudinal forces and which was maken
into consideration by G.P. Cherepanov in his “gah#re-
ory of delaminating of the multilayer shells” (Ckepanov,
1983, p. 267). It was explained by the fact that distance
d was considered to be less then the linear sizbeofrack
(d < 1).

At the same time an account of the longitudinatésr
N7 (D), acting in the transverse cross-section of theeupp
and lower plate parts, allow, under the conditidrstatic
equilibrium of plate part, which is “cut” along claplane,
and on its extension, to determine the shear (tahderce,
acting at the extension of the crack:

a —
T(1) = rdx =N (1). (16)
where 72, = —36(1 — )Q,/h is a “background” stress
acting on the horizontal cross-section of the platinout
a crack but on its depth.
Approximate value of stress intensity factor (SHy)
can be determined by the formula:

K =2, ()2 = -2/25(-p) 2

Maximal (¢ = 0) normal displacements; (without ac-
count of compression), as well as a stressthat appear
on the external and internal surfaces of the loplate part
can be written as follows:

(17)

sqa* | (6% +2.465%02 1a%) 62
24D 1-38+ 382

+2.4e, (1-62 02 Ja% + 1—94] ;

2 2
o (o,rb,z):éa_(l_ﬂgz]q

W

2 2
4h 1-38+38 18)
LL1(G/G"-v")
5 (1—v) '
_ _ 3qa2 2
oy (0,-hy /2) ‘Z?[“‘ 28)(1-6°)
S6°

_ _E(G/G'—v") 1 4
133 4 (1) q(ﬂfzw)+5}

In the case, when the crack is placed along thdaned
surface of the platef(= 0,5; h, = h), edge bending mo-
mentsM,,,. (1), M, (1) and longitudinal forc&V,, (1), acting
at the edges of plate parts in the cracked donzam,ex-
pressed through the bending moméft(l) of the whole
plate by the following formulas:

acta mechanica et automatica, vol.5 no.4 (2011)

M ()= ()= MX(I)+%%;

(19)
~m_3 (G/G'-v")

Ny (1) = MX(I)/h_%W

Consider an extreme case, when the crack is loaated
the median surface of a plate. Formulas for maximoainal
stresses (in the cross-section=0) on the internal
and outer surfaces of the plate parts, dividedhaydrack,
take the following form:

_ 3a? 2\ 1(GIG"-v")
) ( ) (20)
+0) =73 2 —EG/G—'_V"
crx(0,+0)—+2hz a¥ =)

where 8 = l/a is relative length of the crack; upper and
lower signs of notations®” and “¥” in formulas (17)
correspond to the outer surfaces of the lower appleu
parts of the plate, respectively. Streg$0, +0) acts on the
internal surfaces of the plate parts located uifsign “—")
and above (sign “+") the crack.

Maximal displacement of the median surface
of the lower part of the plate can be written ia fbllowing
form:

5qa* 4 C g2 0
=——|1+30"-0.A (-4
M =%mD S
) 3 (21)
+2.4€1(1— 0.2 h? az)h— _ %o0hB
2| 16E
where ag -1 VWV R=5105-Y (46E"/G +V,E" /G)
2 1-v 16(1-v-2'v")

In expression (18) terms with multipliekd /a? anda,
are corrections to the classical thin plate thetmgt take
into account transverse shear and compression.nisgu
that they are zero ones, one can obtain the simples
proximate expression for calculation of the veiticés-
placement of a thin plate containing a crack atmtedian
surface:

5qa4
24D

If the cylindrical stiffnes9 in the latter equation is re-
placed with the valueEl, one obtains the formula
for a vertical displacement of the beam of a cartstaction
containing a crack along the middle line. Howewis
expression is not precise enough for thick plates short
beams, especially those made of composite materials
In this case it is necessary to use the completauia (18)
along with the correspondent expression (2) fopldise-
mentW, utilizing certain corrections for parameters q,
andh.

This problem can be also solved using a hypothesis
based on one of the Timoshenko-type theories (gakito
account the expression fot). However, in this case for-

W = (1+ 394) . (22)
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mulas (15) — (17) don’t contain second term, whadh

counts the influence of transverse shear and casjore
on the nonlinearity of distribution of the normatessao,.

Correction, which accounts the transverse shearcant
pression, in formulas (15) — (17) is a constanti@athough
it is not constant for stresses on the external iatetnal
surfaces of the parts of the plate and it also dép@n the
plate material.

4. NUMERICAL MODELING OF THE PROBLEM.
DUAL BOUNDARY ELEMENT METHOD

Numerical modeling of the considered problem isduse
for verification of the obtained results. Dual bdary ele-
ment method (Portela et al., 1992) for the plaastektatics
is utilized for this purpose. It is well-known thefassical

nents of displacement and traction vectdng; = u; — u;,

Aty =t —t7, Xu; =uf +u;, Xt =t +t7;nf arethe
components of a unit normal vector to a surfBge signs

“+” and “-“ denote the values concerned with thefaces

¢ andIg, formed by a cuf.. Subscripts in notations
correspond to the projections of vectors on the axis
of global coordinate syster®x;x,. Einstein summation
convention is assumed. Kernels of integral equationthto
plane problem elasticity at —» y possess the following
singularities:

T;j(x,y)~1/In|x — y|
Diji(x,y)~1/In[x —y|, S;(x,y)~ (1/In|x —y|)?

For modeling of closed cracks, the equation (20) Ehou
be modified with account of additional conditions zefro
value of normal displacement discontinuities and shear

Uij(x,y)~In|x —yl[, 25)

boundary element method degenerate when considering contact stresses on the mathematical’guts follows:

crack problems due to the lack of equations conisige
load of crack faces (Portela et al.,, 1992). Thessfdhe
dual boundary element method (Portela et al., 19829
developed, which proceed with a system2afequations
basing on Somigliana identityr displacement equations
(as in classical BEM) and additionalty stress equations
obtained from the Somigliana identity by differeitn.
Thus, for the problems of cracks theory, dual BEltégral
equations take the following form (Portela et 3092):

- for collocation point §” placed on a smooth surfade

of a solid —

Zu ()= Uy (xy)t () (x)
=[Tip (xy)uj (x)dr ()
I -y (x,y)2t; ()dr (x)
(

J (x,y)Au; ()dr (x);

(23)

- for collocation point §” placed on a smooth surfadg"
of a crack:

)= Uij (0 y)t; (x)dr (x)
T () () ()
+_"rE Ujj (%, y) Zt; ()dr (x)

‘IrgT” (x,y) Au (x)dr (x);

(v) = Ji- D (e y) 0} (v)t (x)dr (x)
=Ji- Sik (< y)n (y)ue (x)dr (x)

+_"rE Dijk (%)} (y) =ty (x)dr (x)
‘Irg Sik (x.y)ni (y) Bug ()dr ().

Herex is an arbitrary point of the surfadg;;, T;;, Dy,
Sijx are the singular and hypersingular kernels of integra
equations for plane problem of elasticity, which exelic-

itly written in Portela et al. (1992)y;, t; are the compo-

1
EZui (y

(24)
In
2
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Bun (y) = Quj (v) Ay, (y)‘ymrc °

(26)
r=0y; (v)t; (¥)| . =0

2t (y)‘yDrC =0

Here components of rotation tens@r of the vectors
equal:

Q1(y)=m(y), Qua(y)=na(y),

Qa1(y) =-1a(y), Q2a(y) =m(y)

Thus, equation (21) on a mathematical €gtshould
be solved for the unknown discontinuitiedu, =
Q,;(y)Au;(y) of tangent displacement and normal contact
stressp, = —1/2Q,;(y)At;(y). Proceeding from this, the
following system of integral equations can be atedi

=Qy (y “ Ujit;dr - j
I (xy)Qy; (x )AUT(X)dF(X)]
)[J; Dt (x

+[ Sk () Q2 (x) By (x)dr(x) ,
y |:J. Dljktkdr +jr Sjiudr

X, ¥)Qpj (x )Au,(x)dr(x) .

(27)

T.u. dlrf

1
EZUT ijUj

I Slkukdr
(28)

P (y) =" (y)nj (v

0=0y (y)nj (

+jrg Sik (

The following numerical solution procedure for igitel
equations (20), (25) using the dual BEM is propodeat
evaluation of curvilinear integrals, curvEsI: are divided
into parts, which are approximated with the remtifir sec-
tionsTy (boundary elements). Thus, equations (20), (2&) ar
written as sums of integrals along boundary elemént
n nodal pointsx??(p = 1,n) are set on each elemelt
As a rule, discontinuous boundary elements (Poselal.,
1992), i.e. elements with no node placed at the pidt
of a boundary element, are used to solve crackyhaob-
lems.




Particularly, often used are rectilinear quadrateind-
ary elements with three nodes placed as follows:iorthe
center and the other two at the distancd &£ of element
length from the central point. This allows modelioigthe
non-smooth surfaces, because collocation pointrnesia-
cide the corner or a brunching point of a Egt Boundary
functions t;, u;, p,, Au, are interpolated on elemeny
using their node values as follows:

(6.0 Ao ](€) = 32 [197.49° 3P AuSP 0P (6)  (29)
p=1

n

§(6)= 200 (¢)

p=1

(30)

whereé is a parameter of a point position at the boundary
element, defined on the intervatl <¢ <1. dIy =
(Lq/2)dE = ]4d¢€, ], is a Jacobian of a variable change on
I4. For a rectilinear quadratic discontinuous bouwpdze-
ment @ = 3 the values of the parametef = {—2/3;0;
2/3} correspond to its nodes?. Thus, interpolation poly-
nomialsg? (¢) are expressed as follows:

N
¢f°’=<‘(§<‘+gj

Thus, the system of singular integral equationseis
duced to a system of linear algebraic equationsictwh
is sought for the nodal values of boundary fundio@b-
tained solutions of the integral equation system @sed
for calculation of stresss,/q, displacementw = w;E/

(2qh) and stress intensity factor (SIE} = K /Vrl.

(31)

5. NUMERICAL RESULTS

Analysis of numerical results of plane problem lafse
ticity and formula (17) for stresseg allows to state that
the growth of crack in a plate causes the increéstresses
in parts of the plate according to formulas (17 campli-
ance with quadratic parabola law, while plane @adgt
behaves according to the rule close to hyperbala @ne
can see that in the second case the growth is slogler.
Therefore, formulas (17) should be modified by aepig
paramete®? with parameted* and written in the follow-
ing form:

a (1+94)q+l_(G/G'—V")

h? "5 (1-v)
? y (32)
Oy (0,-T—O) :.T.Ea_94 _T_Ew
2n? 4 (1-v)

To prove that such modification is reasonable, \thle
ues of stresw;/q on the outer surface of the lower part
of the plate is evaluated utilizing formula (17)daermula
(28), placed in a separate column in bold font @ox 0
and 6 =1 they are the same), and using dual BEM
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for plane problem of elasticity (in brackets). Thegsults
are presented in Tables 1 and 2.

Tab. 1. Stress values in isotropic plate

a oy 1q (isotropy)
h =0 8=05 =1
18.95 23.64 37.7
5 (18.85) @os8) | 2012 (38.6)
75.20 93.95 150.2
10 7500 ©169) | 8 | (1528)
300.2 375.2 600.2
20 (299.7) (325.7) 308.9 (610.4)
Tab. 2. Stress values in transtropic plate
a oy /q (wood)
h 6=0 6=05 6=1
5 21.52 22.69 40.27
(21.03) (22.69) (38.30)
10 77.77 82.46 152.8
(76.51) (83.35) (148.6)
20 302.8 321.52 602.8
(301.7) (328.7) (596.3)

The value of contact pressure on crack faces, which
is determined by stregs completely coincides with corre-
sponding numerical results of the plane problerelastic-
ity along the whole length of the cracks excepimalsarea
near the crack tips.

Fig. 2 shows plots of stress /q versus the transverse
coordinate z/2h for parametersd = 0,5 and 6 = 0,9,
ata/h = 10, obtained using the improved formulas (28)
(solid line), and the dual boundary element methioplane
problem of elasticity (dashed line). Dash-dot |presents
the corresponding plot for plate without a craclatd) ob-
tained by dual BEM of plane problem of elasticity,
are presented in Fig. 2 in brackets.

Data analysis for stresses, presented in Tab. 1
and in Fig. 2 for isotropic and transtropic (wooddterials,
prove that formulae of applied theory of mediunckimess
plates are quite precise (in comparison with nucadata
of plane elasticity, the error is less than 2.5%J aonven-
ient for calculations.

Analysis of formulas (15) — (19) shows that growth
of crack length increases stresses and displacsneitihe
plate up to the values which can appear in two rsgpa
plates put one onto another without friction. Thtme
stresses in them will increase twice and displacgsne
in four times. Corrections, which account transvesikear
and compression, are insignificant for stressescase
of isotropic material. At the same time these adioms
may be important for transtropic materials (fibass plas-
tics, wood, etc.). For example, for woa@/G' = 10;v"' =
v =0,3), when a/h =0,5; 6 =0,5, errors of classical
theory for the first and second formulas are asdsidl2%
and 37%, respectively. These errors are even higgen
determining the maximal vertical displacement= w;.
See comparative table for relative displacements
w = w,E/(2gh) below (Table 2).

99



Vasyl Shvabyuk, laroslav Pasternak, Heorhiy Sulym
Bending of Orthotropic Plate Containing a Crack Parallel to the Median Plane

s TOOCBLY) 0.5 1502C151.6)
: N\ : x=0 ' \ VIS o
2i2h) ] \ alh=10
" 0=1
0.25— © 025 \-
\
T ] \
o " -150.2(-151.6) \
\ \ 150.2(151.6)
4 i \
\
-0.25 {025 \
7 ) - WNI50-2(151.6
: : PN 75.1"
-0.5 T T T T T T T T T -0.5 T T — \I
-120 -80  -40 0 40 80 o./q -200 -100 0 100  o./q
Fig. 2. Plots of stress, /q against the transverse coordinat@h
Tab. 3. Values of vertical displacements for isotropictela
a W=w E/(th) (isotropy)
h =0 (p.p) =0 =05 (pp) 6=05 =1 (pp) =1
5 100.8 96.85(88.87) 105.4 114.3(105.5) 384.9 365.5
10 1459 1454(1422) 1522 1723(1688) 5917 5728
20 22.86-1b 22.88-18 23.79-18 27.15.18 94.13-18 91.16-18
Tab. 4. Values of vertical displacements for wooden board
a W=w E/(th) (wood)
h =0 (p.p) 6=0 6=0.5 (pp) =05 =1 (pp) =1 6=1()
5 184.9 184.3 192.6 201.5 446.7 452.9 355.5
10 1755 1805 1840 2073 5910 6078 5688
20 24.01-1% 24.28-18 25.10-18 28.56-18 90.92.18 92.56-18 91.0-18
Data in Tables 3 and 4 in brackets present thdatisp REFERENCES
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