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Abstract: This paper investigated the fracture behaviour giezo-electro-magneto-elastic material subjecte@léctro-
magneto-mechanical loads. The PEMO-elastic mediomtains a straight-line crack which is paralleitsopoling direction
and loaded surface of the half-space. Fourier foamstechnique is used to reduce the problem tcstiietion of one Fred-
holm integral equation. This equation is solvedctlya The semi-permeable crack-face magneto-etetimundary condi-
tions are utilized. Field intensity factors of sge electric displacement, magnetic induction, lcrdisplacement, electric
and magnetic potentials, and the energy release as determined. The electric displacement andnetaginduction
of crack interior are discussed. Strong couplingvben stress and electric and magnetic field fearctack tips has been

found.

1. INTRODUCTION

Due to the growth in applications as smart devices,

the mechanical and fracture properties of two-plmazgne-
tostrictive/piezoelectric composites are becomingrem

and more important, see: Huang and Kuo (1997), Pan

(2001), Buchanan (2004), Chen et al. (2005), Amnigieal.
(2006), Lee and Ma (2007), Calas et al. (2008) ldad et
al. (2009), among other, have been published thermsa
on this field. The fracture mechanics of PEMO-étasta-
terials also have attracted much attention and manay
search papers have been published; see e.g. Ll et
(2001), Sih and Song (2003), Gao et al. (2003),uzioal.
(2004), Hu and Li (2005), Wang and Mai (2006b),and
Kardomateas (2007), Feng et al. (2007), Tian anf-Ra
pakse (2008), Zhan and Fan (2008); among others.

For the fracture analysis of a magneto-electrotielas
solid of much interest are the effects of magndtotac
boundary conditions at the crack surfaces on tlaeker
growth as well as the choosing of fracture critdkidang
and Mai, 2006b, Wang et al., 2006a). As an appraton
to areal crack, the magneto-electrically permeabhal
impermeable crack face boundary conditions are girev
in the above stated-works. However these two ideatk
models are only the limiting cases of real dielectrack

(Wang and Mai; 2006b; Rogowski, 2007). However, the
above-mentioned works associated with semi-perrmeeabl

crack problems are only limited to an infinite magn

electro-elastic solid with cracks. Additionally,etmumeri-

cal procedures are used to obtain the results.Vvsitetil by

this consideration this paper investigates a PEN&Stie

half-space with an electrically and magneticallyaiocting

crack under anti-plane mechanical and in-planetmlec
magnetic loadings to shown exact solution in singa-

Iytical form.
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2. BASIC EQUATIONS

For a linearly magneto-electro-elastic medium under
anti-plane shear coupled with in-plane electric anag-
netic fields there are only the non-trivial antapé dis-
placemeniv:

U, =0, uy =0, u, = w(xy) e
strain componentg,, andy,,,:

_ow _ow
yxz_a' yyZ_a_y (2)

stress components, andt,,, in-plane electrical and mag-
netic potentialsp andy, which define electrical and mag-
netic field components,, E,,, H, andH,;:

XY oy ox' Y dy 3)

and electrical displacement components D, and mag-
netic induction component,, B, with all field quantities
being the functions of coordinatesaandy.

The generalized strain-displacement
and (3) have the form:

relations (2)

Vaz =Wgo Ea =@y, Ha :_w,a (4)

wherea = x,y andw, = dw/da.
For linearly magneto-electro-elastic medium the -cou
pled constitutive relations can be written in thatrix form

[722:Da+Ba]" =ClYaz—Eqr—Hy]" 5)

where the superscrifdt denotes the transpose of a matrix
and:



Ca  ©5 Q15
C=le&s —&; —dy (6)
Ois —Cdip —fh

wherec,, is the shear modulus along thelirection, which

is direction of poling and is perpendicular to iketropic

plane f,vy), &, and yu,, are dielectric permittivity and
magnetic permeability coefficientg;s, q,5 and d,; are

piezoelectric, piezo-magnetic and magneto — elecef-

ficients, respectively.

The mechanical equilibrium equation (called as Eule
equation), the charge and current conservation tiemsa
(called as Maxwell equations), in the absence eftibdy
force electric and magnetic charge densities, eawiitten
as:

Taog =0. D, =0. B,,=0. =Xy @)

Subsequently, the Euler and Maxwell equations thke
form:

clozw.02e %] =000l 8)
where V2=

2
;?—i- 9%/ dy? is the two-dimensional Laplace

operator.

Since|C| # 0 one can decouple the equations (8):
0?w=0; O%p=0; 0% =0 )

If we introduce, for convenience of mathematics

in some boundary value problems, two unknown flomsti

b(_elswﬂ _Q15WT = Co[@‘/’]T (10)
where:
-&,; -d
L
Then:
low] =co™lr-eswn - qsn] " (12)
where:
Cot= 1 . {‘/111 _d11 } =|:el ez} (13)
Enphy —dip [ du f11] (& &
The governing field variables are:
T = CagWy = aDy = BB,
p=awtex +er
Y =Pnte)xtey (14)
Dy = Xk
By =n7x: k=xy
0%w=0; 0%y=0; 0%=0 (15)

where:
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Cyq =Cyq + €15 + 5

_ s —diths _ (
a=—"———"=—=-\66 %+ e2‘115)
1y — d121 (16)
_ &1lhis — d11e15 — (
= = —(ehs + €85)
Eqafhy — d121 ° °

Note thatc,, is the piezo-electro-magnetically stiffened
elastic constant.
Note also that:

1 1 a B
Cl'==—|a a°+3,e aB+Ce
C - -
“ B aB+ce B 2+ Gss

These material parameters will appear in our surhgti

(17)

3. FORMULATION OF THE CRACK PROBLEM

Consider a PEMO-elastic half-space containing gittai
line crack of length2a, parallel to the surface of a half-
space which is subjected to electric, magneticraadhani-
cal loads. The crack is located along thaxis from —a
to a at a deptth from the loaded surface with a rectangular
coordinate system, as shown in Fig. 1. The PEMGtela
half-space is poled in thedirection.

To solve the crack problem in linear elastic sqlids
the superposition technique is usually used. Thasfivgt
solve the magneto-electro-elastic field problemhuaiitt the
cracks in the medium under electric, magnetic aret m
chanical loads. This elementary solution is:

Tyz )
Dy, casel
Dy:D: %roq. £+ e-|-5 0+(dll+el5q15jH01
Cas Caa Caa
casell (18)
By, casel
By=B= %TO +[dll+ elsqlsJEo | M +% Ho,
Cyq Cas Cas
casell

Then, we use equal and opposite values as the staick
face traction and utilize the unknowmng and b, in the
crack region. Thus, in this studyzy; —(D —dy), —(B —
by) are, respectively, mechanical, electrical and ratign
loadings applied on the crack surfaces (the sedadkertur-
bation problem).

The boundary conditions can be written as:

sz(x’h+):_ro (Xh+):_D+d0,

B,(x h) =-B+b,. |{.a (19)
[r.,)=o, MDy|l=0, [8,]]=0, {0, y=h (20)
[wl=0, [d]=0 l¥l=0 ><I>a y=h (21)
7,(x0)=0 D,(x0)=0 0)=0. | (22)
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where the notatior|f|] = f*
values forh + while f~ for h —.

—f~ and f* denotes the

dy.by

«—1_—pole
<P

crack

= =, =, = = _—=

Tn
Tx 2 F T o1 T T
Dy and By or E; and H,

Fig. 1. The PEMO-elastic half-space with a crack parallel

to its surface under an anti-plane mechanical

and in-plane electric and magnetic loads.

Inside the crack the unknown electromagnetic

field appearsd, andb, are unknown to be determined)

Dy and By or Ej and Hy,

Of course, in perturbation problem the surface & t
half-space is free. The electric displacemégntand mag-
netic inductionb, inside the crack are obtained from semi-

permeable crack face boundary conditions (Rogowski

(2007)). For two different magneto-electric med?&MO-
material and notch space we have continuity cooliti
of electric and magnetic potential in both materi inter-

face. The semi-permeable crack-face magneto-edectri

boundary conditions are expressed as follows:

) Lol

520 20(x) 23

THo N
where §(x) describes the shape of the notch apdyu,
are the dielectric permittivity and magnetic perbibty
of crack interior. If we assume the elliptic notphofile
such that:

3(x)=(d,/ala® - x?

where §,is the half-thickness of the notch at= 0,
we obtain:

2d0(5o/5c a’-x* = —Hﬂ]
20,(8,/ uNa? = =y

Egs (25) form two coupling linear equations with re
spect tod, andb, since[|¢|] and[|y|]] depends linearly
on these quantities as show boundary condition} &hé
(21).

(24)

(25)

4. THE SOLUTION FOR HALF-SPACE
WITH DISCONTINUITY ATy =h

Define the Fourier transform pair by equations:
cos(sx

=Tf( x)cos@Xdx  f(x —7% (26)

O'—-8

Considering the symmetry abomaxis the Fourier co-
sine transform is only applied in Eqs (15) resgitin ordi-
nary differential equations and their solutions:

s y)= Alge™

(26a)
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Xsy)= B(9e™
Als y)=Ci(ge™
Ws y)=A(ge™ + A(de”
Xsy)=B,(ge +B,(ge”

Alsy)=C,(9e™ +Cy(9e”

In the domainy > h the solution has the form (26a)
to ensure the regularity conditions at infinity.
The transforms of Eqs (14) yield:

d(sy)=eil(sy)+eilsy)+aifsy)
d(sy)=exl(sy)+ejilsy)+Bisy)

fzy(s’ y) = E44V’§/,y - aﬁ)’ - ﬁéy

y>h

(
(

0<y<h (26b)

(27)
Dy :)?,)h By :,,7\')/

The unknown functions 4;(s), B;(s) and C;(s),
i =1,2,3, are obtained from the boundary conditions (20)
and (22) which in transform domain are:

o; [5=0; |8]}-o

(28)
f,=0. D,=0, B,=0, y=0
where[|f] = f(s,h +) — f (s, h—).
The result is:
AlS)= (9l - &)
B(s)= Y9l -
Cl(S — Hs)(e—sh _esh)
(29)

C, (S) =G, (S) =t

Finally, the solution for the half-space with disddion
density functionsf (s), g(s) andh(s) in the domairy > 0
|x| < o0 is given by:

wxy)= 72;]0 lsgrﬁy Re 1) e 4““]CO$S%S

al —e"s(y"h)]cos( syds (30)

xxy)= 7277 s [Sgr(y

=] Hslsarty- e 7 -t cog s

0



r,(xy)= 7_21 644]'0 sf( s)[e_ﬁ*(rh)‘ —e‘s(y”‘)]coi syds+
_721 T s[ads) + A1 §][e_$(rh)‘ —e’s(y“”h)]cos{ syds

,(xy) =%ng{s[ -4 gdyeh) ]cos(sx)
0

S(xy =7%I [ -yl gmdyeh) ]cos(sx)

wheresgn(y — h) = +1 ory > h ory < h, respectively.
The potentialsp(x,y) andi(x,y) are obtained from
Eqgs (14).

5. FREDHOLM INTEGRAL EQUATION
OF THE SECOND KIND

The unknown functions(s), g(s) and h(s) can be
obtained from the mixed boundary conditions (19)
and (21)which yield:

ET é(s)[l—e‘ZSh]00£€ syds= +(D —d02a+(B—l:b),8

Cas

0

7% J' gj(s)[l— e‘ZS“]cos(sx)ds= ~(D-d,)

) (31a)
%T sf(s)[l— e‘ZS“]cos(sx)ds= ~(B-by): |{.a
Af(s)cos(sx)ds =0
(s)cos(sx)ds =0 (31b)

s)codsx)ds=0 ; {za

O—8 O—8 O—38
= «Q’

The integral equations (31a) may be rewritten as:

To"'(D_do)a"'(B_tb)ﬁx

A(S) 1-e2 G 32)
—J' e S|r(s)ds=— (D-d)x
= (B—Q)x

We introduce the integral representation of thenomkn
functions:

+(D-dy)a+(B-h)8
644 a f(u)
= D-d, J. g(u)
B-hy ° [ Hy)

—+)>
—_
O

(33)

J(sydu

P=aJ(13
v
|
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where J,(su) is the Bessel function of the first kind
and zero order andg(u), g(u), h(u) are new auxiliary
functions. This representation satisfies equatig@sb)
automatically and converts equations (32) to thelAine
integral equation, which can be solved expliciilje result
is the Fredholm integral equation of the secondkin

fu)-] (9K(uvdv=1

° (34)

with the kernel:

K(uv)= \i se?"3 (su)d, (sv)ds 35)

and:
f(u)= glu) = ()

of coursef(s), §(s) and h(s) are dissimilar since
are proportional ta, + (D —dg)a + (B —by)B ; D —d,
and B — b,, respectively, andl,, b, are dissimilar func-
tions, defined by Egs. (23).

(36)

6. THE SOLUTION OF FREDHOLM INTEGRAL
EQUATION OF THE SECOND KIND

The kernel functiork (u, v) may be presented in more
useful form. Using the Neumann’'s theorem (Watson,
1966):

Jo(su)JO(sr) =]—1Tj|'TJO(sR)da

(37)
R? =u? +r? - 2ur cosa
and the integral:
K - 2h
sJ,(Rge>"ds = (38)
[ R? + (20|
the kernel function becomes:
ahv 2 da
K(u, v) =
2 EI; (1— k2 cog a)yz (39)
12 =(u+vfPean?, k2=

| 2

The kernel function is presented by means of &lijpt
tegral. The integral equation (34) can be solvedtdnative
method.

The recurrence formula is:

a

fi (U) = 1+J. fiu

0

(VK(uvidv, f,(\)=1, i=12.n  (40)

The n-th approximation gives:
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f(u):1+afau{1—4—;%}+
Joa Y, ankk)],
TS "

n n
( a ) 1 4h K(ko)
a+u mTo g
whereK (k) is the elliptic integral of the first kind defined
by:

ml2 da
Klo)= | igcogar
(42)
12=(a+u)’ +4n? 2_%

The sum of infinite geometric series convergeshi t
solution asn — oo, giving:

f(u):{l- afu[l—z K(k‘))jr u<a (43)

ml,/2h
The range of convergence is given by inequality:

i) (24

m

lu<a (44)

and is satisfied for all af anda/h.

Forh — oo, (2/m)K(ky) —» 1 andly/2h — 1, while for
h - 0, we have the logarithmic singularity of (k,) for
u=a:

1
L 2au (45)

atu

K(k,)-"

But hK (k,)/l, tends to zero as/h — co.
Thus we have the values:

f[%j ) {l+%¢1i52 K[Jlfdz H
f(O)—\/E, 5=2

The values off (a/h) changes from 1 to 2 for all
of a/h andf (u) is given explicitly by Eq. (43).

(46)

7. FIELDINTENSITY FACTORS

The electric displacement, magnetic induction amehs
stress outside of the crack surface can be exurdgse

{[E)’;((: 23}:727{2:&}3 fludf sysdf-e>Jcokhs (47)
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J[xhs)=- ‘25“)(:05{ syds

udqusJo (

o'—.m

2
m°
Using the integral:

3

-2sh : J ds = n
_([e sm(sx) 0(su) S W (48)
u? =X2(1+52)(1"72) 2h=xén

equations (47) may be written as:
{Dy(xht)}:_z{D—do}djf( u E % n }
B(xhs)| ™ 7|B-h [dx) W2 Ae+7)

(49)
2, df M1
ITTO dX'([ f(u)Ud{X\/Xz 2 x(f2 +/72)

The singular terms of these quantitipg & a™) are in-
cluded in the first term in Eq. (49). Since thegsilar field
near the crack tip exhibits the inverse square-sagajular-
ity we define the stress, electric displacement madnetic
induction intensity factors as follows:

X$50, 750

r,(xh+)=

K T

T zy
Kp =‘Lim+1/2le—ai D, (50)
Ke) B,

The intensity factors are obtained as:
1
Kw :~_(Kr +aKD +M<B)
Cay
Ky =aK, +eKy +e,Kg
=K, 6Ky +eKy

K :%TO f(a)\/g (51)

The jumps of displacement, electric potential aragm
netic potential of the crack surfaces can be eggtsas:

H""”z%ro+(D_d°)a+(B_b°)ﬂTj£u)Udu
()udL (52)

S

M %;{4%+(D—déjf+(8—tb)d +e(D-d)+ g(B_Q)}I f(yudt

X
Substituting Eqgs (52) into Eqs (25) and differettig
both obtained equations with respect o and using
the following rule of differentiation under intedjisign:

Yr{BIA, (6, )+ gfp)




LY ___xi(a) +xj (ﬂj&
dXx\/uz— aja?-x  dul u )2 -y
equations (25) may be converted to two equatiorghich

singular terms atc - a — 0, appear. For the singularity
to vanish atc = a — 0, it must be true that:

(53)

do:—%f(a{gA[ro+<o—do)a+<e—a)d+q(o—do)+%<s—a)

- (54)
u,=—m(a{§4[ro+(D—oma+(e—q)4+g(o—do>+%(a—q>}
where:

2 :]_2_[510 c b = ﬂ%yc (55)
Thus
D-d, {D{l pof(fz esﬂmeo (fﬁ J
+Tci—‘j o+ ugidee, -eﬁ)f]}x
oo
A4 44 44 (56)

NN RN

+%ﬁ t|p+equdae, -eﬁ)f]}x
44

x {1_{50[54 wafrul £ 10 et eé)]}

wheref = f(a/h).

The electric and magnetic intensity factors areaioied
by substitution of Eqs (56) into Egs (51).

Furthermore we consider the behaviour of the jumps
of the displacement, electric and magnetic potentia
and define the following intensity factors:

KW
K,t= Iim ——— (57)
| 2 X
Ky 7
In view of the results in Eq. (52), we have:
1
Kw =~_(Kr +aKD +:6KB)
Caq (58)
K(p = aKw +e.I.KD +%KB

Ky = BKy +&Kp +e5Kg

These field intensity factors satisfy the consiviit
equations:
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Ko, [ =2 K KT (59)

The energy release rate is derived in the following
in similar manner to proposed by Pak (1990).

The energy release rate of the crack-tip is obthfrem
the following integral:

:—I|m—f{ ot +a 0w +a- o)+
D, (r +a0) [|¢1]r+a—5)

B,(r + a,O)[|¢|](r +a- 5)}dr

(60)

where[|w]], [|¢|] and[|y]] are the jumps of displacement,
electric potential and magnetic potential field emsity
factors given by Egs. (52).

The energy release rate is defined as:

1
:E(KTKW+KDK¢,+KBK¢,) (61)
or:
2 .5 1 2) 2
G=—f -d
) (a)a_(—)544 ey — A2 [(511/111 11)70 +
- (044/111 + Q125XD ~do)* - (044511 + ef5XB ~by)? 62)

+ 2(315/111 - Q15d11)T0(D - do) +
+ 2(%5511 - elsdll)TO(B - bo) +

+2(Cqq0h + €505)(D —do )(B - bo)]

8. SOLUTIONSBASED ON IDEAL CRACK-FACE
BOUNDARY CONDITIONS

When the crack is one of four ideal crack modelagm
neto-electrically permeable, magneto-electricathpérme-
able, magnetically permeable and electrically impeable,
magnetically impermeable and electrically permealasies
the limiting cases of the magneto-electrically eotic
crack model.

— fully impermeable case, - 0 andy, » 0,D —d, —

D, B — b, = B and the intensity factors are given by:

K™ -2 flaja (f)\/g (r, + Da +Bp)
T Cyy
imp.imp. - E
K; p f(a)\/gro
impimp. — E
K _ﬂf(a)JED (63)
K [mpimp. — 3 f(aW/aB

Kimp.imp. - m<lmp.lmp. + e_LKimp.imp. +eZKimp.imp.
@ w D B
imp.imp. — imp.imp. imp.imp. imp.imp.

Ky =Ky +6Kp +eKpg

Equations (63) indicate thdf,, K, and K; are inde-

pendent on the material constants, whilg K, and K,
depend. Sincg(a) depend on the parameter of location
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of the crack(the thicknesa), strictly speaking om/a,
these quantities depend on this location.
— full permeable case, - 0 andy, — 0

Then:
T T
D—doz%' B—boz% (64)
44 44
And:
K Per-per. — 2 f(a)\/5
w - Ty
T Cy
Krper.per. :E f(a)\/gro
T
KDper.per. — elE_)Kv\;’)er.per. (65)

per.per. _ per.per.
Kg = thsKy

K ;er. Per. —

Kl;er.per. =0
The energy release rate is:

_2 r2af?(a)
T Cy

— electrically impermeable and magnetically permeable
& — 0andyy, - 0,D—-dy—-D,d, =0

G (66)

imp.per _ | impimp.
KD KD

B_bo{D[ff_ﬂ+ezjf(a)+i°—ﬂ{l+(ﬁ*esﬂ_l

Csa Cas Caa
(67)
kg =2 f(aa(B-b,)
kimeoer = 2 f(a)yafot P, g impper
T C44

The solutions for the electrically impermeable amalg-
netically permeable crack are independent of thelieg
magnetic field.

- electrically permeable and magnetically impermeable

€y, = 0andy, - 0,B—by > B,by = 0

KBE)er.imp. - Kgnp.imp

izt o))

(68)
kg =~ f(aNa(o - a,)
Kvt)enimp :E f(a)\/g Toj B/B + a,KDpenimpA
T C44

The solution for the electrically permeable and negy
cally impermeable crack are independent of the ia@pl
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electric displacement.

In practical applications the following cases appea
- Letg, tends to infinity and, is finite

Then:

g =K o )+ K5 1)
o (69)
Ké)erm;zc - KlE;anmp. (1_ fl(,L_l)) + Kéner.per. fl(,L_l)

where:

- 1 g 1 ;
()= ﬂ:g%iﬂa[ﬂ' s j (70)

1+pm> H1Cys

— Letu, tends to infinity and, is finite
Then:

K = Km0 1)+ ke )

| (71)
K;cperm — Kgnp.per. (1_ fz(g))-'- Ké)er.per. fz(‘?)
where:
_ _]_Tii 1 e_L25
fz(é‘)—1+§, &€= 2 g, 67(55[14- 511C44] 72

In above equations the notati&®¢" ™ denotes the in-
tensity factors (51) and (58) for electrically pemable
and magnetically impermeable crack boundary cooriti
i.e. for the values (68). Similarlj™”Pe" are defined
by Egs (51) or (58) and (67).

The functions of permittivitye, and permeabilitypu,
approaches zero as andy, tends to zero and are unity
ase, andy, tends to infinity.

The solution perfectly matches the exact solution
in both limiting cases, namely permeable and/orampe-
able electric and/or magnetic boundary conditions.

9. RESULT AND DISCUSSION

1,8 /
1,6

0 40 80 120 160 % 200

Fig. 2 Variation of f (a/h) versus ratio ofi/h; stress, electric
displacement and magnetic induction intensity fiscto
are proportional t¢f (a/h) since:f(a/h) = K, /tova(2/
) = Kg/B+a(2/m) in fully impermeable case

The electric and magnetic response, in fully imperm
able case, is proportional to the applied elearnd mag-
netic load, respectively, and is independent omibkehani-
cal loads, as Eq. (63) implies. Similarly is forests inten-



sity factor. The intensity factors of stress, aleatlisplace-
ment and magnetic induction, therefore, are juistnation
of the geometry of the cracked PEMO-elastic ha#esp
as shown in Fig. 2.

From the Fig. 2 we can see that the SIF, EDIF atié M
increase witha/h. For small values ofi/h these quantities
grow at an approximately constant rate with incireas
a/h. For very largea/h (the crack near the boundary
of a half-spacef (a/h) increases slowly tending to 2.

10. CONCLUSIONS

From analytical and numerical several

conclusions can be formulated:

— The electric displacement intensity factor is inelegeent
of the applied magnetic field in the special cakelec-
trically impermeable and magnetically permeablekra

— The magnetic induction intensity factor is indepemd
of the applied electric displacement in the specéde
of electrically permeable and magnetically imperbtea
crack;

— Applications of electric and magnetic fields do atier
the stress intensity factors;

— The analytical solution (43) is new to the authoest
knowledge. Accordingly, the behaviour of a crack
which lies near of the boundary of the medium may b
investigated exactly;

— Note that the planec =0 is a plane of symmetry
(to, = 0,D, = 0 and B, = 0 on this plane). In conse-
quence the solutions are valid for quarter-plane
with edge crack of length.

results,
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