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Abstract: This paper investigated the fracture behaviour of a piezo-electro-magneto-elastic material subjected to electro-
magneto-mechanical loads. The PEMO-elastic medium contains a straight-line crack which is parallel to its poling direction 
and loaded surface of the half-space. Fourier transform technique is used to reduce the problem to the solution of one Fred-
holm integral equation. This equation is solved exactly. The semi-permeable crack-face magneto-electric boundary condi-
tions are utilized. Field intensity factors of stress, electric displacement, magnetic induction, crack displacement, electric 
and magnetic potentials, and the energy release rate are determined. The electric displacement and magnetic induction 
of crack interior are discussed. Strong coupling between stress and electric and magnetic field near the crack tips has been 
found. 

1. INTRODUCTION 

Due to the growth in applications as smart devices, 
the mechanical and fracture properties of two-phase magne-
tostrictive/piezoelectric composites are becoming more 
and more important, see: Huang and Kuo (1997), Pan 
(2001), Buchanan (2004), Chen et al. (2005), Annigeri et al. 
(2006), Lee and Ma (2007), Calas et al. (2008) and Hou et 
al. (2009), among other, have been published the papers 
on this field. The fracture mechanics of PEMO-elastic ma-
terials also have attracted much attention and many re-
search papers have been published; see e.g. Liu et al. 
(2001), Sih and Song (2003), Gao et al. (2003), Zhou et al. 
(2004), Hu and Li (2005), Wang and Mai (2006b), Li and 
Kardomateas (2007), Feng et al. (2007), Tian and Raja-
pakse (2008), Zhan and Fan (2008); among others. 

For the fracture analysis of a magneto-electro-elastic 
solid of much interest are the effects of magneto-electric 
boundary conditions at the crack surfaces on the crack 
growth as well as the choosing of fracture criteria (Wang 
and Mai, 2006b, Wang et al., 2006a). As an approximation 
to a real crack, the magneto-electrically permeable and 
impermeable crack face boundary conditions are prevail 
in the above stated-works. However these two ideal crack 
models are only the limiting cases of real dielectric crack 
(Wang and Mai; 2006b; Rogowski, 2007). However, the 
above-mentioned works associated with semi-permeable 
crack problems are only limited to an infinite magneto-
electro-elastic solid with cracks. Additionally, the numeri-
cal procedures are used to obtain the results. Motivated by 
this consideration this paper investigates a PEMO-elastic 
half-space with an electrically and magnetically conducting 
crack under anti-plane mechanical and in-plane electro-
magnetic loadings to shown exact solution in simple ana-
lytical form.  
 

2. BASIC EQUATIONS  

For a linearly magneto-electro-elastic medium under 
anti-plane shear coupled with in-plane electric and mag-
netic fields there are only the non-trivial anti-plane dis-
placement �: 

0=xu , 0=yu , ( )yxwuz ,=  (1)

strain components ��� and ���: 

x

w
xz ∂

∂=γ , 
y

w
yz ∂

∂=γ  (2)

stress components ��� and ���, in-plane electrical and mag-
netic potentials � and �, which define electrical and mag-
netic field components  ��, ��, �� and ��: 

x
Ex ∂

∂−= φ
, 

y
Ey ∂

∂−= φ
, 

x
H x ∂

∂−= ψ
,  

y
H y ∂

∂−= ψ
        (3)

and electrical displacement components ��, �� and mag-
netic induction components 	�, 	� with all field quantities 
being the functions of coordinates 
 and �. 

The generalized strain-displacement relations (2) 
and (3) have the form:  

ααγ ,wz = ,  αα φ,−=E , αα ψ ,−=H      (4)

where � = 
, � and �
,� = 
�/
�. 

For linearly magneto-electro-elastic medium the cou-
pled constitutive relations can be written in the matrix form 

[ ] [ ]T
z

T
z HEBD αααααα γτ −−= ,,,, C      (5)

where the superscript � denotes the transpose of a matrix 
and: 
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where ��� is the shear modulus along the �-direction, which 
is direction of poling and is perpendicular to the isotropic 
plane (
, �), ���	and ��� are dielectric permittivity and 
magnetic permeability coefficients, ���, ��� and ��� are 
piezoelectric, piezo-magnetic and magneto – electric coef-
ficients, respectively. 

The mechanical equilibrium equation (called as Euler 
equation), the charge and current conservation equations 
(called as Maxwell equations), in the absence of the body 
force electric and magnetic charge densities, can be written 
as: 

0, =αατ z ;  0, =ααD ;   0, =ααB ;   yx,=α  (7)

Subsequently, the Euler and Maxwell equations take the 
form: 

[ ] [ ]TT
w 0,0,0,, 222 =∇∇∇ ψφC  (8)

where ∇�=
	�

	
�
+ ∂�/ ∂�� is the two-dimensional Laplace 

operator. 
Since |�| ≠ 0 one can decouple the equations (8): 

02 =∇ w ;   02 =∇ φ ;   02 =∇ ψ  (9)

If we introduce, for convenience of mathematics 
in some boundary value problems, two unknown functions: 

[ ] [ ]TTwqwe ψφηχ ,, 01515 C=−−  (10)

where:  
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1111

1111
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ε
d

d
C  (11)

Then: 

[ ] [ ] TT wqwe 1515
1

0 ,, −−= − ηχψφ C  (12)

where: 


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The governing field variables are: 

kkkzk BDwc βατ −−= ,44
~  

ηχαφ 21 eew ++=  

ηχβψ 32 eew ++=  

kkD ,χ=  

kkB ,η= ;   yxk ,=  

(14)

02 =∇ w ;   02 =∇ χ ;   02 =∇ η  (15)

 
where: 

15154444
~ qecc βα ++=  

( )1521512
111111

15111511 qeee
d

qde
+−=

−
−

=
µε

µα  

( )1521532
111111

15111511 eeqe
d

edq +−=
−

−=
µε

εβ  

(16)

Note that ��̃� is the piezo-electro-magnetically stiffened 
elastic constant. 

Note also that: 
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





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
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++
++=−

344
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ecec
c

βαββ
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C  (17) 

These material parameters will appear in our solutions.  

3. FORMULATION OF THE CRACK PROBLEM 

Consider a PEMO-elastic half-space containing straight-
line crack of length 2�, parallel to the surface of a half-
space which is subjected to electric, magnetic and mechani-
cal loads. The crack is located along the �-axis from −� 
to � at a depth ℎ from the loaded surface with a rectangular 
coordinate system, as shown in Fig. 1. The PEMO-elastic 
half-space is poled in the �-direction. 

To solve the crack problem in linear elastic solids, 
the superposition technique is usually used. Thus we first 
solve the magneto-electro-elastic field problem without the 
cracks in the medium under electric, magnetic and me-
chanical loads. This elementary solution is: 
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(18)

Then, we use equal and opposite values as the crack sur-
face traction and utilize the unknowns ��	and ��	in the 
crack region. Thus, in this study, −	�; −(
 − ��), −(� −

��) are, respectively, mechanical, electrical and magnetic 
loadings applied on the crack surfaces (the so called pertur-
bation problem). 

The boundary conditions can be written as:  

( ) 0, ττ −=±hxzy , ( ) 0, dDhxDy +−=± ,   

( ) 0, bBhxBy +−=± ;   x ‹ a  
(19)

[ ] 0=zyτ , [ ] 0=yD , [ ] 0=yB , x ‹ ∞ , hy =  (20)

[ ] 0=w , [ ] 0=φ , [ ] 0=ψ ,  x ≥a, hy =  (21)

( ) 00, =xzyτ , ( ) 00, =xDy , ( ) 00, =xBy ; x ‹ ∞  (22)
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where the notation �|�|� = �� − �� and �� denotes the 
values for ℎ + while �� for ℎ −. 

Fig. 1. The PEMO-elastic half-space with a crack parallel  
to its surface under an anti-plane mechanical  
and in-plane electric and magnetic loads.  
Inside the crack the unknown electromagnetic  
field appears (��	and �� are unknown to be determined) 

Of course, in perturbation problem the surface of the 
half-space is free. The electric displacement �� and mag-
netic induction �� inside the crack are obtained from semi-
permeable crack face boundary conditions (Rogowski 
(2007)). For two different magneto-electric media: PEMO-
material and notch space we have continuity condition 
of electric and magnetic potential in both materials at inter-
face. The semi-permeable crack-face magneto-electric 
boundary conditions are expressed as follows: 

[ ]
( )x

d c δ
φ

ε
20 −= ,  

[ ]
( )x

b c δ
ψ

µ
20 −=  (23)

where �(	) describes the shape of the notch and 
�, �� 
are the dielectric permittivity and magnetic permeability 
of crack interior. If we assume the elliptic notch profile 
such that:  

( ) ( ) 22
0 xaax −= δδ  (24)

where ��	is the half-thickness of the notch at 	 = 0, 
we obtain: 

( ) [ ]φεδ −=− 22
002 xad c  

( ) [ ]ψµδ −=− 22
002 xab c  

(25)

Eqs (25) form two coupling linear equations with re-
spect to �� and �� since �|�|� and �|
|�   depends linearly 
on these quantities as show boundary conditions (19) and 
(21). 

4. THE SOLUTION FOR HALF-SPACE  
WITH DISCONTINUITY AT y = h 

Define the Fourier transform pair by equations:  

( ) ( )∫
∞

=
0

)cos(ˆ dxsxxfsf , ( ) ( ) ( )∫
∞

=
0

cosˆ2
dssxsfxf

π  (26)

Considering the symmetry about �-axis the Fourier co-
sine transform is only applied in Eqs (15) resulting in ordi-
nary differential equations and their solutions:  

( ) ( ) syesAysw −= 1,ˆ  (26a)

( ) ( ) syesBys −= 1,χ̂               � > ℎ 

( ) ( ) syesCys −= 1,η̂  

( ) ( ) ( ) sysy esAesAysw 32,ˆ += −
 

( ) ( ) ( ) sysy esBesBys 32,ˆ += −χ            0 ≤ � < ℎ      

( ) ( ) ( ) sysy esCesCys 32,ˆ += −η  

(26b)

In the domain � > ℎ the solution has the form (26a) 
to ensure the regularity conditions at infinity. 

The transforms of Eqs (14) yield: 

( ) ( ) ( ) ( )yswyseyseys ,ˆ,ˆ,ˆ,ˆ
21 αηχϕ ++=  

( ) ( ) ( ) ( )yswyseyseys ,ˆ,ˆ,ˆ,ˆ
32 βηχψ ++=  

( ) yyyzy BDwcys ˆˆˆ~,ˆ ,44 βατ −−=  

yyD ,
ˆˆ χ= ,  yyB ,

ˆˆ η=  

(27)

The unknown functions �����,����� and �����, 
� = 1, 2, 3, are obtained from the boundary conditions (20) 
and (22), which in transform domain are: 

[ ] 0ˆ =zyτ ;   [ ] 0ˆ =yD ;  [ ] 0ˆ =yB  

0ˆ =zyτ ;   0ˆ =yD ;   0ˆ =yB ;   0=y  

(28)

where [|��] = ����, ℎ +� − ��(�, ℎ−). 
The result is: 

( ) ( )( )shsh eesfsA −= −ˆ
1  

( ) ( )( )shsh eesgsB −= −ˆ1  

( ) ( )( )shsh eeshsC −= −ˆ
1  

( ) ( ) ( ) shesfsAsA −== ˆ
32  

( ) ( ) ( ) shesgsBsB −== ˆ32  

( ) ( ) ( ) sheshsCsC −== ˆ
32  

(29)

Finally, the solution for the half-space with dislocation 
density functions �(�), �(�) and ℎ(�) in the domain � ≥ 0  
|	| < ∞ is given by: 

( ) ( ) ( ) ( ) ( )[ ] ( )∫
∞

+−−− −−−=
0

2
dssxcoseehysgnsf̂y,xw hyshys

π
 

( ) ( ) ( ) ( ) ( )[ ] ( )∫
∞

+−−− −−−=
0

2
dssxcoseehysgnsĝy,x hyshys

π
χ  

( ) ( ) ( ) ( ) ( )[ ] ( )∫
∞

+−−− −−−=
0

2
dssxcoseehysgnsĥy,x hyshys

π
η  

(30)
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( ) ( ) ( ) ( )[ ] ( )
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βα
π

π
τ

( ) ( ) ( ) ( )[ ] ( )∫
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+−−− −=
0

2
dssxcoseesĝsy,xD hyshys

y π
 

( ) ( ) ( ) ( )[ ] ( )∫
∞

+−−− −=
0

2
dssxcoseesĥsy,xB hyshys

y π
 

where ����� − ℎ� = +1 or � > ℎ or � < ℎ, respectively. 
The potentials �(�, �) and 	(�, �) are obtained from 

Eqs (14). 

5. FREDHOLM INTEGRAL EQUATION  
OF THE SECOND KIND 

The unknown functions 
(�), �(�) and ℎ(�) can be 
obtained from the mixed boundary conditions (19) 
and (21)which yield: 

( )[ ] ( ) ( ) ( )
44
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c

bBdD
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The integral equations (31a) may be rewritten as:  
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(32)

We introduce the integral representation of the unknown 
functions: 
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(33)

where ��(��) is the Bessel function of the first kind 
and zero order and �(�), �(�), ℎ(�) are new auxiliary 
functions. This representation satisfies equations (31b) 
automatically and converts equations (32) to the Abel one 
integral equation, which can be solved explicitly. The result 
is the Fredholm integral equation of the second kind: 

( ) ( ) ( ) 1,
0

=− ∫ dvvuKvfuf
a

 
 

(34)

with the kernel: 

( ) ( ) ( )∫
∞

−=
0

00
2, dssvJsuJsevvuK sh

 
 

(35)

and: 

( ) ( ) ( )uhuguf ==     (36)

of course		��(�), ��(�) and ℎ	(�) are dissimilar since 
are proportional to 
� + �� − 
��� + (� − ��)� ; � − 
� 
and � − ��, respectively, and 
�, �� are dissimilar func-
tions, defined by Eqs. (23). 

6. THE SOLUTION OF FREDHOLM INTEGRAL 
EQUATION OF THE SECOND KIND 

The kernel function �(�, �) may be presented in more 
useful form. Using the Neumann’s theorem (Watson, 
1966): 

( ) ( ) ( )∫=
π

α
π

0
000

1
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αcos2222 urruR −+=  

(37)

and the integral:  
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the kernel function becomes: 
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0
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4
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2 4

l

uv
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The kernel function is presented by means of elliptic in-
tegral. The integral equation (34) can be solved by iterative 
method. 

The recurrence formula is:  

( ) ( ) ( )∫ −+=
a

ii dvvuKvfuf
0

1 ,1 , ( ) 10 =vf ,   ni ,...2,1=  (40)

The n-th approximation gives: 
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where �(��) is the elliptic integral of the first kind defined 
by: 

( ) ∫ −
=

2

0
2122

0
0

1

/

)cosk(

d
kK

π

α
α

 

( ) 222
0 4hual ++= ,   2

0

2
0

4

l

au
k =  

(42)

The sum of infinite geometric series converges to the 
solution as � → ∞, giving: 
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The range of convergence is given by inequality: 
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and is satisfied for all of � and �/ℎ. 
For ℎ → ∞, �2/���(��) → 1 and 	�/2ℎ → 1, while for 

ℎ → 0,  we have the logarithmic singularity of  �(��) for 
� = �: 
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But ℎ�(��)/	� tends to zero as �/ℎ → ∞. 
Thus we have the values: 
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The values of 
(�/ℎ)  changes from 1 to 2 for all 
of �/ℎ and 
(�) is given explicitly by Eq. (43). 

7. FIELD INTENSITY FACTORS 

The electric displacement, magnetic induction and shear 
stress outside of the crack surface can be expressed by:  
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Using the integral: 
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equations (47) may be written as: 
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The singular terms of these quantities (|�| → �
�) are in-

cluded in the first term in Eq. (49). Since the singular field 
near the crack tip exhibits the inverse square-root singular-
ity we define the stress, electric displacement and magnetic 
induction intensity factors as follows: 
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The intensity factors are obtained as: 
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The jumps of displacement, electric potential and mag-
netic potential of the crack surfaces can be expressed as: 
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Substituting Eqs (52) into Eqs (25) and differentiating 
both obtained equations with respect to � and using 
the following rule of differentiation under integral sign: 
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equations (25) may be converted to two equations in which 
singular terms at � → � − 0, appear. For the singularity 
to vanish at � → � − 0, it must be true that: 
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where: 
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where � = �(�/ℎ). 
The electric and magnetic intensity factors are obtained 

by substitution of Eqs (56) into Eqs (51). 
Furthermore we consider the behaviour of the jumps 

of the displacement, electric and magnetic potentials 
and define the following intensity factors: 
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In view of the results in Eq. (52), we have: 
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These field intensity factors satisfy the constitutive 
equations: 

[ ] [ ]T
BD

T
w KKKKKK ,,,, 1

τψφ
−= C  (59)

The energy release rate is derived in the following 
in similar manner to proposed by Pak (1990). 

The energy release rate of the crack-tip is obtained from 
the following integral: 
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where [|�|], [|�|] and [|�|] are the jumps of displacement, 
electric potential and magnetic potential field intensity 
factors given by Eqs. (52). 

The energy release rate is defined as: 
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(62)

8. SOLUTIONS BASED ON IDEAL CRACK-FACE 
BOUNDARY CONDITIONS 

When the crack is one of four ideal crack models: mag-
neto-electrically permeable, magneto-electrically imperme-
able, magnetically permeable and electrically impermeable, 
magnetically impermeable and electrically permeable  are 
the limiting cases of the magneto-electrically dielectric 
crack model. 
− fully impermeable case: �� → 0 and �� → 0, 	 − 
� →

	, � − �� → �	and the intensity factors are given by: 
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 (63)

Equations (63) indicate that ��, �� and �� are inde-
pendent on the material constants, while	��, �� and ��,  
depend. Since �(�) depend on the parameter of location 
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of the crack(the thickness ℎ), strictly speaking on ℎ/�, 
these quantities depend on this location. 
− full permeable case: �� → 0 and �� → 0 

Then: 
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The energy release rate is: 
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− electrically impermeable and magnetically permeable: 
�� → 0 and �� → 0, 	 − 
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The solutions for the electrically impermeable and mag-
netically permeable crack are independent of the applied 
magnetic field. 
− electrically permeable and magnetically impermeable: 

ε� → 0 and μ� → 0, B − b� → B, b� → 0 
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The solution for the electrically permeable and magneti-
cally impermeable crack are independent of the applied 

electric displacement. 
In practical applications the following cases appear: 

− Let �� tends to infinity and �� is finite 
Then: 
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where:  
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− Let �� tends to infinity and �� is finite 
Then: 

( )( ) ( )εεε
2

..
2

... 1 fKfKK perper
D

impimp
D

perm
D

c +−=  

( )( ) ( )εεε
2

..
2

... 1 fKfKK perper
B

perimp
B

perm
B

c +−=  

(71)

 where:  
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In above equations the notation ��	
��� denotes the in-
tensity factors (51) and (58) for electrically permeable 
and magnetically impermeable crack boundary conditions 
i.e. for the values (68). Similarly ����.�	
. are defined 
by Eqs (51) or (58) and (67). 

The functions of permittivity �
 and permeability �
  
approaches zero as �
 and �
 tends to zero and are unity 
as �
 and �
 tends to infinity. 

The solution perfectly matches the exact solution 
in both limiting cases, namely permeable and/or imperme-
able electric and/or magnetic boundary conditions. 

9. RESULT AND DISCUSSION 

 
 

Fig. 2 Variation of �(�/ℎ) versus ratio of �/ℎ; stress, electric 
displacement and magnetic induction intensity factors 
are proportional to �(�/ℎ) since: ���/ℎ� = ��/��√�(2/
�) = ��/	√�(2/�) in fully impermeable case 

The electric and magnetic response, in fully imperme-
able case, is proportional to the applied electric and mag-
netic load, respectively, and is independent on the mechani-
cal loads, as Eq. (63) implies. Similarly is for stress inten-
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sity factor. The intensity factors of stress, electric displace-
ment and magnetic induction, therefore, are just a function 
of the geometry of the cracked PEMO-elastic half-space 
as shown in Fig. 2. 

From the Fig. 2 we can see that the SIF, EDIF and MIIF 
increase with �/ℎ. For small values of �/ℎ these quantities 
grow at an approximately constant rate with increasing  
�/ℎ. For very large �/ℎ (the crack near the boundary 
of a half-space) �(�/ℎ) increases slowly tending to 2. 

10. CONCLUSIONS 

From analytical and numerical results, several 
conclusions can be formulated: 
− The electric displacement intensity factor is independent 

of the applied magnetic field in the special case of elec-
trically impermeable and magnetically permeable crack; 

− The magnetic induction intensity factor is independent 
of the applied electric displacement in the special case 
of electrically permeable and magnetically impermeable 
crack; 

− Applications of electric and magnetic fields do not alter 
the stress intensity factors; 

− The analytical solution (43) is new to the author’ best 
knowledge. Accordingly, the behaviour of a crack 
which lies near of the boundary of the medium may be 
investigated exactly; 

− Note that the plane � = 0 is a plane of symmetry 
(��� = 0,	� = 0 and �� = 0 on this plane). In conse-
quence the solutions are valid for quarter-plane 
with edge crack of length �. 
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