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Abstract: A plane problem of frictional contact interactioatlveen two elastic isotropic half planes one ofclfpossesses
a single shallow recess (depression) is examinegtdrcase of successive application of remote aahstormal and shear
forces. The loads steps (compression, and next tooigally increasing shear loads) lead to the nwntact problem
with an unknown stick-slip boundary determined sy Amonton-Coulomb law. It is reduced to a Cauclpetgingular inte-
gral equation for the tangential displacement jumthe unknown sliding region. Its size is derifeam an additional condi-
tion of finiteness of shear stresses at the ed@ebeoslip zone. Considerations are carried outsfmme general shape
of the recess. Analytical results with the chandzétion of the considered contact are given ahsstilated for the certain

form of the initial recess

1. INTRODUCTION

The frictional effects during contact of elastidide are
the subject of the investigation of many authonserlest to
such problems is stimulated by applied requestsngfi-
neering, tribology, geophysics, bulding industrg drome-
chanics. Amonton-Coulomb’s classical friction l&swsed
widely in engineering applications involving corttac
(Kragelsky et al.; 1982). In this law, it is assuhtbat two
contacting bodies either sticks| < fp) or slip (s| = fp)
to each other, whergis the constant coefficient of friction,
s andp are the magnitudes of tangential and normal trac-
tion due to friction. If the equalitjs| = fp is valid for the
whole contact region, then we have the case ahgliffic-
tion. Realistic frictional contact problems reduoefinding
the correct size and location of the stick-slip taary de-
pending on given loading conditions.

In literature dealing with contact problems (Barlaed
Ciavarella; 2000) the overwhelming majority of wserk
consider the contact of bodies with non-conforming
boundaries (see classification by Johnson; 198%). grob-
lem to be considered is referred to contact friwioprob-
lems involving interactions of bodies with confotiea
boundaries. Such a kind of the interaction takimip iac-
count the absence of local contact caused by #sepce of
local small geometric perturbations of initial bdanies is
less investigated although it is quite typical foany con-
tacting joints. In this field basic research regagdfric-
tionless contact has been carried on and documdsés]
for example, Shvets et al., 1996; Katzki and Monastyr-
skyy, 2002; Monastyrskyy and Kaawmki, 2010; and refer-
ences therein). Similar problems involving frictiavere
considered by Martynyak and Kryshtafovych (2000),
Kryshtafovych and Matysiak (2001) and in a seriepa
pers by Martynyak et al. (2005, 2006).

The present paper is devoted to analyze the behavio
of a complete contact couple formed by two seninitd
elastic planes with the presence of a small surfacess
under the combination of remote normal and shearefo
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This is achieved in two steps: first, by solving fiall stick
contact problem and next, using it to pose and esolv
the stick-slip problem with an unknown slip zondimed

by the Amonton-Coulomb law. Research is performed
for some general shape of the recess. The finalltses
are given and illustrated in particular case.

2. FORMULATION OF THE PROBLEM

The problem under study involves the investigation
of frictional contact between two homogeneous eldslf-
planesD, (upper) andD; (lower) made of the same iso-
tropic material. Referring to the Cartesian cooatiénsys-
tem Oxy the boundary ofD, is rectilinear whereas the
boundary ofD; has a small deviation in the form of the
sloping recess located in a segmer [—b, b] as shown in
Fig. 1a. Accordingly, the shape of the lower ha#ne
boundary is described by the smooth functigm) given
by the formula:

o(1-¢/0?)™ | [x<b,

0, x| >b,

r(x)=

@)

wherer, and2b are maximal depth and length of the re-
cessn = 1,2, ... is a natural parameter, and the assumption
0 <1y/b < 1is made.

Fig. 1. Sketch of interaction of half-planes:
a) before contacth) in full contact



The following phases of constant loading at infirare
considered: first, normal compressive for@gdeading to
full contact and subsequently, monotonically insieg
shear forces§ giving rise to partial sliding.

Similar to the well-known Cattaneo procedure used

in partial slip contact under combined normal and
tangential loading (Ciavarella; 1998), the fullckticontact
problem is solved and analyzed first in order ttatessh
correctly the conditions in formulation of the mastick-
slip contact problem of interest.

3. FULL-STICK CONTACT PROBLEM

Consider the problem of full-stick contact of thalfh
planes without slip (Fig. 1b) characterized by bloeindary
conditions at the interface= 0, [x| < oo:

g, (x,0)=0y (x,0), 7y K,0)=Ty &,0),

u"(x,0)-u* (x,0)= 0,v” &,0-Vv" &,0F-r &) (2)
and at infinity:

Oy(X20)==P, 7, (X,+0)=S5, @)
Ox($0,y) =0, 7, (ko,y)=S.

Here and subsequently,, oy, 7,, — the components
of stressesu, v — the components of the displacement
vector; superscripts “—" and “+” denote the limialues
of functions at the interface of the half plaigsandD,.

Additionally, the requirement of the non-negativity
constraint of the contact pressure:
p(X) =-0y(x,0)2 0, [} <o 4)
has to be used to determine a condition for thepbeta
contact.

Following the solution of the above problem empiayi
the well-known technique of analytical continuation
(Muskhelishvili; 1953) and given in Martynyak et. al
(2005 a, b), the stresses and displacements inathies are
expressed by means of the derivative of the funati®) as
follows:

Ux(x,y)+ay(x,y) =4RE{CDI QI_P,
gy (% y) =ity (X y)=® (2)- P @)+
~(z-2)®[(2)-P-iS,

2(3%[U(x,y) +iv(x,y)] =K@ @)+ @)+

)
v 3-«k
-(z-2)9 (9 + P,

in which:

-G b ¢ (t)dt
¢‘1(Z)=—q’2(2)=( ) | © :

ml+k) o t-z (6)
z=x+iyOD,, 1=1,2,
and G is the shear modulusy is Poisson’s ratio,

k = 3 — 4v is Kolosov's constant.
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Inserting (1) into (6) and using (5) gives the nafm
stresses on the contact surface|fgdr< b:

2o (2103 (-

o (x,0)=
y (%.0) @+K)b 2'n!

(X)j—P (7

and for|x| > b:

2Gry(2n+
ai(x,O):—rO( n+y,
@+«)b
on—=1)1 2 n_% ®)
o @D e X[ X +P(a)(x) _p,
2"n! bl{ b?
where:
2 4 n
P@)(x) =a (5) +a (5) +..+a (zj ,
(x) =[5 | +aq| e
no (-1)%n! (2k-2j-3)!
A+ = 2 k(l ) IE( ) ) ,
k=j+1KI(n=K)! (2k-2j-2)!
j=0,1,2,.n-1, € )E 1, 0 1
Accordingly, the shear stresses are:
Tiy(%0)=S, xO(=,+w). (9)

By observing that the global maximum of RHS
in relation (7) is achieved at = 0, we obtain from (4)
the inequality for the value of the normal pressute
that satisfies full contact of the bodies

P> Grg(2n+1)(2n—- !
2"+ kbd

(10)

According to the Amonton-Coulomb law, the increase
in the shear force$ does not affect in sliding if the contact
stresses satisfy the conditian,||< f|a, |, i. €.

S<f{P_GrO(2n+1)(m—1)u} a1

2" niL+4)b

Thus, the slip occurs when this condition is vietht
4. STICK-SLIP CONTACT PROBLEM

Let us consider now the case opposite to (11):

(12)

S> f{P—GrO(Zn“Ll)(?n— 1)!!j

2" ni+ k)b

that is the condition of sliding in the vicinity olie point

x = 0. So we are faced with the stick-slip problem irickh
we assume from the loading and geometry symmety th
there exists a region of local slidifg| < ¢ (see Fig. 2).
Note that the half-length of the slip zoneis unknown.
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Fig. 2. Interaction of half-planes in stick-slip contact

For the present non-trivial problem we have the esam
boundary conditions at infinity given by (3) andeth
following contact condition oy = 0:

a,(x0)=0y (x,0), [ <,
Ty (x.0)= r;('y (x,0), [ < oo,

7, (x,0) = loy (x,0], I <c, (13)

u”(x,0)-u* (x,0)= 0, [¥=c,
V7 (%,0)-V" (x,0)=-r (x), | < co.

Moreover,sign(tx,) = signS is chosen from the slip
behavior.

To determine an unknown coordinateof the stick-slip
boundary, we will use the condition ensuring fingss
of the contact shear stresses at the edges oliplmose:

lim \rxy(x0)\<+oo. (14)
X £C

In dealing with solution to the above posed problem
we use the commonly employed method of intercorgapt
functions, devised by Martynyak (1985).

First we solve an auxiliary problem with the same
boundary conditions of the original problem buttéesl

of (13)% we set:
u”™(x,0)-u" (x,00=U (x), |{<c. (15)

Results for the normal and tangential stresseshat t
nominal interface are expressed as (Martynyak et al

2005b):
_ 2G  br'(t)at
,0)= -P,
Jy(X ) ﬂ(1+K)_jb t—x )
_ __ 26 cU'(t)dt
Dy (X.0)= 71(1+/()_IC t—x S

and comparing with the solution of stick problem see
that the formula for normal stresses doesn’t chahigav

substitution (16) into relationships (}3yields a singular
integral equation for the unknown derivative of dtian

U'(x):

1eU'@Ddt _1+k

n_jc ox 26 (SR
+(2n+1)rof((2n—1!!+p(a)(x)), K<c @7
b 2"n!
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By utilizing the theory of singular equations with
Cauchy kernels (Muskhelishvili; 1953), it is podsilio
obtain the solution of this equation in the clatfuactions
with the natural conditions of continuity of thelatve
tangential shift/ (+¢) = 0. Omitting details, we focus only
on the expressions for the tangential stressdwedhterface
boundary:

= (%)= - 2G(2n+])rof((2h— ) !!_P(w)(X)J, K<,

(I+x)b 2"n!

_ 2G(2 fr(2n-2N W
f -
foem g (30
XL > 18
\/ﬁ' |X| c (18)
-C

where:

PI(x) = dg +da (x/c)? +da(x/c)* +...+ d  (x0) ™,

. (2k-3)!

k=1 (2K ax (/b)™,

n o (2k-2j-3)!

c 2k
Ay | — ,i1=12,..n-1
S (k-2 2‘( ) : "

b

P(W)(x) =Wy +w2(x/c)2 +w4(x/c)4+...+w2ﬂ (x/c)21 ,

D dyp(2m-2j -7
I e I

, 1=0,1,2,..n

In order to close the problem in hand, we have to
modify the above expressions to guarantee theitefinss
in the vicinity of the pointfc according to the condition
(14). By analyzing relation (18), it is sufficietd fulfil the
equation:

(2n+)Grpf (-1 N
2" nib(1+ k)

S-fP+

2G(2n+ Yryf
_#p(d)(c) =0. (19)
(1+x)b
In point of fact, this equation determines the unkn
locationc of the stick-slip boundary.

5. RESULTS

To analyze and illustrate the behavior of the ccinta
couple on the basis of the obtained analytic swmiuti
to the considered problem, calculations are peréorm
for the special form of the recess given by themida (1)
forn = 3.

Considering first the stick contact problem, wedfin
the normal contact stresses from relations (7)(&hnd



2 4 6
O'i(X,O):—l4Gr0 i—1—5)(—+—5X——X— -P, |X|Sb,
y Q+K)b( 16 8p2 2p* pb
gy (x0)= 14Gro
1+K)b
5
2 Y3 2 4 6
x| 24X X g 7 DX OX X b s (20)
16 |b|| p2 8b% 2p* pb

Graphs of contact stresses are given in Fig. 3.sbhid
line corresponds t¢|a,|(a, = g,/G) and the dashed lines
1,2,3 — to tangential stresses, (T, = T4,/G) over
the contact linec = x/b under pressur = 2-10"* (P =
P/G), friction coefficient f =0,1, maximal depth
of the reces$, = r,/b = 10~* and Poisson’s ratio = 0,2
for some values of shear stressés (S=S5/G):
1-§=2-10"%2-5=6,328-10"%,3-5S=15-10"°.

S1G,110°

7,100
25

=3 _

—_2_

1 _

3 -2 A 0 1 2 X3
Fig. 3. Distributions of the contact stresses

In view of (11), ifP > 3[26”’

in full contact. By analyzing the relations (7) ai®) we see
that the increase of the shear forc@sdoes not in sliding

if § < =257 that follows from the conditiont)}, <f|a, |.
8b(1+k) y y

This shows the dashed line 1. However, accordinthéo

3SGTO T
Amonton-Coulomb law, forS = f(P — 8b(1+K)) sliding

starts in the vicinity of the point = 0 (see the dashed lines
2, 3).

Now we pass to the main contact problem involving
sliding in the unknown regiojx| < c for loads:

SZf(P— 3% )

8(1+k)b )
The governing singular integral equation (17) fbe t
unknown derivative of functioti’ (x) has the form:

then the half planes are

10U'@dt _1+k

S-fP)+
n_jc t=x ZG( )
(21)
Trof (5 15x%  5x* x°
| = - -2 <c.
b |16 8b2 2p* p®

The desired solution is:
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1+K fro( 5¢c® 21c*
U (x \/c - X S fP)+ —
(9= [ )* (16[36 16p4
,35¢2 35 3t x® _10__ x®_ 7c%x?
16p2 16  8p*p2 2p2p4 po 4be2

2 4

$22X_TX ] y<c (22)
8 p2 2p*t

From the equation (19), having now the form:

6
_5C_ :0'
16,6

we find the half-length of the slip zone — paramete

c= b\/l—s/i;—gb( fP-S)

and then the tangential contact stresses are:

15¢*
=~ _+
16p4

+ 3&3r0f
8b(1+«)

. _ 1Gryf [Ecz_

A+xp| 16p2

(23)

4 6
r;y(x,0)=fP+14Gr0f _5, 15x2 5L X ’ |x|sc,
(1+k)b| 16 8b2 204 pb
- _ i HGRT( 5 15x% _5x* , Xx©
rxy(x,O)—fP+(l+K)b( 1678 807 2p° b6 +
_/Crf (15_5c¢® ¢ x*, 3c*, c?x? 2_4
(1+K)bl 4 2p2 "p2  4pt p2p2 ot
b‘VbZ b2’ (24)

By assuming the threshold valug= fP we have
¢ = b and the shear contact stresses become:

14Gfry (x® 5x* 15x* 5
rt(x,0)=fP+—0 |2 27 ;=2 , X <b,
w(.0) (L+x)blb® 2p* 8p2 16 2

6 4
r;fy(x,O)= P+ 14Gfr, _5x +15x 5+
(1+«)b e 2b4 8p2 16
e 52
- — , X >b. 25
bl pZ X (25)

Since the condition,, = f|g,| is satisfied at any point
of the contact region, we have the case of slilicgjon.

The results of numerical calculations are perforrfued
the following dimensionless parameters:

x=x/b, T=ro/b, T=¢/b, U=U/b, 7,=0,/G,

= = _ = _104
=1, /G, P=P/G, S=§/G and f =0.1, [ =107,
v=0.2.

Fig. 4 shows the distributions of the relative tamiggal
shift of bodies boundaried in the slip zone under the
pressureP = 2-10~* for the following values of the shear
tractionsS :1-§=10"°2-§=14-10"°,3-5=18"
1075; 4— §=2-10"%. The maximum value of the
modulus of the relative tangential shift of bounésr
increases with the shear tractions and reachdeimdntre
of the recess.

79



Nataliya Malanchuk, Andrzej Kacagki
Stick-Sip Contact Problem of Two Half Planeswith a Local Recess

o0

U=10°
0.2
0.4

-0.6

-0.8
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Fig. 4. Distributions of the relative tangential shift
of bodies boundaries
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Fig. 5. Half-length of the slip zone versus the exterhales forces

The nonlinear dependence of the half length ofslie
sizet on the shear force&sfor some values of the pressure
P: 1-P=15-10"% 2-P=2-10"% 3—-P=25"
10™* is shown in Fig.5. The horizontal straight lines
of the plots correspond to the case of the stichtam
of the bodies. We can see that the zone of slibezpmes
greater with increasing shear forces.

3
f16,k10°

Tor10°
2 4

0

-2 0 2 x
Fig. 6. Contact stresses in the stick-slip problem

Symmetric distributions of stresses for illustrgtithe
behavior of the slip-stick contact are demonstratdeig. 6.
A graph off|a, | (curve 4) and graphs of tangential stresses
Tyy (curves 1,2, 3) versug =x/b are given under the
pressureP = 2-107* for the following values of the shear
forcesS :11-S=10"%2-S=1,4-10"% 3-S=18"
107°.

It is seen that the normal stresses have a global

6. CONCLUSIONS

In the paper we have investigated the complete fric
tional contact of two half-planes containing logabmetric
perturbation of boundaries accounting for frictibrsip
under sequential remote normal and shear forces.fdm
mulated stick-slip contact problem is reduced ® singu-
lar integral equation for the function of the relattangen-
tial shift of bodies boundaries which is next salve
with the determination of the size of sliding. Ore tbasis
of the analytical solution to the above-mentionedbfem
the dependences of slip zone length and contaess&s
on applied loadings are analyzed.
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