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Abstract: A plane problem of frictional contact interaction between two elastic isotropic half planes one of which possesses 
a single shallow recess (depression) is examined in the case of successive application of remote constant normal and shear 
forces. The loads steps (compression, and next monotonically increasing shear loads) lead to the main contact problem 
with an unknown stick-slip boundary determined by the Amonton-Coulomb law. It is reduced to a Cauchy-type singular inte-
gral equation for the tangential displacement jump in the unknown sliding region. Its size is derived from an additional condi-
tion of finiteness of shear stresses at the edges of the slip zone. Considerations are carried out for some general shape 
of the recess. Analytical results with the characterization of the considered contact are given and illustrated for the certain 
form of the initial recess. 

1. INTRODUCTION 

The frictional effects during contact of elastic solids are 
the subject of the investigation of many authors. Interest to 
such problems is stimulated by applied requests of engi-
neering, tribology, geophysics, bulding industry and biome-
chanics.  Amonton-Coulomb’s classical friction law is used 
widely in engineering applications involving contact 
(Kragelsky et al.; 1982). In this law, it is assumed that two 
contacting bodies either stick (|�| < ��) or slip (|�| = ��) 
to each other, where � is the constant coefficient of friction, 
� and � are the magnitudes of tangential and normal trac-
tion due to friction. If the equality |�| = �� is valid for the 
whole contact region, then we have the case of sliding fric-
tion. Realistic frictional contact problems reduce to finding 
the correct size and location of the stick-slip boundary de-
pending on given loading conditions. 

In literature dealing with contact problems (Barber and 
Ciavarella; 2000) the overwhelming majority of works 
consider the contact of bodies with non-conforming 
boundaries (see classification by Johnson; 1985). The prob-
lem to be considered is referred to contact frictional prob-
lems involving interactions of bodies with conformable 
boundaries. Such a kind of the interaction taking into ac-
count the absence of local contact caused by the presence of 
local small geometric perturbations of initial boundaries is 
less investigated although it is quite typical for many con-
tacting joints. In this field basic research regarding fric-
tionless contact has been carried on and documented (see, 
for example, Shvets et al., 1996; Kaczyński and Monastyr-
skyy, 2002; Monastyrskyy and Kaczyński, 2010; and refer-
ences therein). Similar problems involving friction were 
considered by Martynyak and Kryshtafovych (2000), 
Kryshtafovych and Matysiak (2001) and in a series of pa-
pers by Martynyak et al. (2005, 2006). 

The present paper is devoted to analyze the behavior 
of a complete contact couple formed by two semi-infinite 
elastic planes with the presence of a small surface recess 
under the combination of remote normal and shear forces. 

This is achieved in two steps: first, by solving the full stick 
contact problem and next, using it to pose and solve 
the stick-slip problem with an unknown slip zone defined 
by the Amonton-Coulomb law. Research is performed 
for some general shape of the recess. The final results 
are given and illustrated in particular case. 

2. FORMULATION OF THE PROBLEM 

The problem under study involves the investigation 
of frictional contact between two homogeneous elastic half-
planes ��  (upper) and �� (lower) made of the same iso-
tropic material. Referring to the Cartesian coordinate sys-
tem ��� the boundary of �� is rectilinear whereas the 
boundary of �� has a small deviation in the form of the 
sloping recess located in a segment � ∈ [−	, 	] as shown in 
Fig. 1a. Accordingly, the shape of the lower half-plane 
boundary is described by the smooth function 
(�) given 
by the formula: 

( ) 1 22 2
0 1 , ,

( )
0, ,

n
r x b x b

r x
x b

+− − ≤= 
 >

 (1) 

where 
� and 2	 are maximal depth and length of the re-
cess, � = 1,2, … is a natural parameter, and the assumption   
0 < 
�/	 ≪ 1 is made. 

 
Fig. 1. Sketch of interaction of half-planes: 

a) before contact; b) in full contact 



acta mechanica et automatica, vol.5 no.4 (2011) 

77 

The following phases of constant loading at infinity are 
considered: first, normal compressive forces � leading to 
full contact and subsequently, monotonically increasing 
shear forces 
 giving rise to partial sliding. 

Similar to the well-known Cattaneo procedure used 
in partial slip contact under combined normal and 
tangential loading (Ciavarella; 1998), the full stick contact 
problem is solved and analyzed first in order to establish 
correctly the conditions in formulation of the main stick-
slip contact problem of interest. 

3. FULL-STICK CONTACT PROBLEM 

Consider the problem of full-stick contact of the half-
planes without slip (Fig. 1b) characterized by the boundary 
conditions at the interface � = 0, |�| < ∞: 

( ,0) ( ,0), ( ,0) ( ,0),

( ,0) ( ,0) 0, ( ,0) ( ,0) ( ) ,
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= =
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and at infinity: 
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Here and subsequently, ��, ��, ��� – the components 
of stresses; �, � – the components of the displacement 
vector; superscripts “–” and “+” denote the limit values 
of functions at the interface of the half planes �� and ��. 

Additionally, the requirement of the non-negativity 
constraint of the contact pressure: 

( ) ( ,0) 0yp x x−= − ≥σ , x < ∞  (4) 

has to be used to determine a condition for the complete 
contact. 

Following the solution of the above problem employing 
the well-known technique of analytical continuation 
(Muskhelishvili; 1953) and given in Martynyak et al. 
(2005 a, b), the stresses and displacements in the bodies are 
expressed by means of the derivative of the function r(x) as 
follows: 
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in which: 
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and � is the shear modulus, � is Poisson’s ratio, 
	� = 3 − 4� is Kolosov’s constant. 

Inserting (1) into (6) and using (5) gives the normal 
stresses on the contact surface for |�| ≤ 	:  
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and for |�| > 	: 
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where: 
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Accordingly, the shear stresses are: 

( )( ,0) , ,xy x S x± = ∈ −∞ + ∞τ . (9) 

By observing that the global maximum of RHS 
in relation (7) is achieved at � = 0, we obtain from (4) 
the inequality for the value of the normal pressure � 
that satisfies full contact of the bodies 

0
1
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+ −
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+ κ
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According to the Amonton-Coulomb law, the increase 
in the shear forces 
 does not affect in sliding if the contact 
stresses satisfy the condition |���|< �|��|, i. e. 

0
1
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Thus, the slip occurs when this condition is violated. 

4. STICK-SLIP CONTACT PROBLEM 

Let us consider now the case opposite to (11): 

0
1
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2 !(1 )n

Gr n n
S f P

n b−

 + −
≥ −  + κ  

(12) 

that is the condition of sliding in the vicinity of the point 
� = 0. So we are faced with the stick-slip problem in which 
we assume from the loading and geometry symmetry that 
there exists a region of local sliding |�| < � (see Fig. 2). 
Note that the half-length of the slip zone c  is unknown. 
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Fig. 2. Interaction of half-planes in stick-slip contact 

For the present non-trivial problem we have the same 
boundary conditions at infinity given by (3) and the 
following contact condition on � = 0: 

( ,0) ( ,0),y yx x− +=σ σ  ,x < ∞  

( ,0) ( ,0),xy xyx x− +=τ τ  ,x < ∞  

( ,0) ( ,0) ,xy yx f x− −=τ σ  ,x c<  (13) 

( ,0) ( ,0) 0,u x u x− +− =  x c≥ , 

( ,0) ( ,0) ( ) ,v x v x r x− +− = −  .x < ∞  

Moreover, ��������� � = ����
 is chosen from the slip 
behavior. 

To determine an unknown coordinate c  of the stick-slip 
boundary, we will use the condition ensuring finiteness 
of the contact shear stresses at the edges of the slip zone:  

lim ( ,0)xy
x c

x
→±

< +∞τ . (14) 

In dealing with solution to the above posed problem 
we use the commonly employed method of intercontact gap 
functions, devised by Martynyak (1985).  

First we solve an auxiliary problem with the same 
boundary conditions of the original problem but instead 
of (13)3 we set: 

( ,0) ( ,0) ( ), .u x u x U x x c− +− = ≤  (15) 

Results for the normal and tangential stresses at the 
nominal interface are expressed as (Martynyak et al.; 
2005b): 
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(16) 

and comparing with the solution of stick problem we see 
that the formula for normal stresses doesn’t change. Now 
substitution (16) into relationships (13)3 yields a singular 
integral equation for the unknown derivative of function 

( )U x′ : 
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By utilizing the theory of singular equations with 
Cauchy kernels (Muskhelishvili; 1953), it is possible to 
obtain the solution of this equation in the class of functions 
with the natural conditions of continuity of the relative 
tangential shift ��∓�� = 0. Omitting details, we focus only 
on the expressions for the tangential stresses at the interface 
boundary: 
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where: 
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In order to close the problem in hand, we have to 
modify the above expressions to guarantee their finiteness 
in the vicinity of the point ∓� according to the condition 
(14). By analyzing relation (18), it is sufficient to fulfil the 
equation: 
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In point of fact, this equation determines the unknown 
location � of the stick-slip boundary. 

5. RESULTS 

To analyze and illustrate the behavior of the contact 
couple on the basis of the obtained analytic solution  
to the considered problem, calculations are performed 
for the special form of the recess given by the formula (1) 
for � = 3. 

Considering first the stick contact problem, we find 
the normal contact stresses from relations (7) and (8): 



acta mechanica et automatica, vol.5 no.4 (2011) 

79 

2 4 6
0

2 4 6

14 5 15 5
( ,0) , ,

(1 ) 16 8 2y
Gr x x x

x P x b
b b b b

±  
= − + − − ≤ 

 +  
σ

κ

014
( ,0)

(1 )y
Gr

x
b

± = ×
+

σ
κ

 

5
2 2 4 62

2 2 4 6

5 15 5
1 , .

16 8 2

x x x x x
P x b

b b b b b

 
  

× + − − + − − >      
 

 

(20)

 

Graphs of contact stresses are given in Fig. 3. The solid 
line corresponds to ������(��� = ��/�) and the dashed lines 
1, 2, 3 – to tangential stresses ��̅�(��̅� = ���/�) over 
the contact line 
̅ = 
/� under pressure �� = 2 ∙ 10��		(�� =
�/�), friction coefficient � = 0,1, maximal depth 
of the recess ��̅ = ��/� = 10�� and Poisson’s ratio � = 0,2 
for some values of shear stresses �̅  (�̅ = �/�): 
1 – �̅ = 2 ∙ 10��; 2 – �̅ = 6,328 ∙ 10��; 3 – �̅ = 15 ∙ 10��. 

 
Fig. 3. Distributions of the contact stresses 

In view of (11), if � ≥
��	
�

��(
��)
, then the half planes are 

in full contact. By analyzing the relations (7) and (8) we see 
that the increase of the shear forces S  does not in sliding 

if � <
��	
�

��(
��)
	that follows from the condition |��̅�<f|��|. 

This shows the dashed line 1. However, according to the 

Amonton-Coulomb law, for � ≥ �(� −
��	
�

���
���
) sliding 

starts in the vicinity of the point 
̅ = 0 (see the dashed lines 
2, 3). 

Now we pass to the main contact problem involving 
sliding in the unknown region |
| ≤ � for loads: 
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The governing singular integral equation (17) for the 
unknown derivative of function ��(
) has the form: 
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The desired solution is: 
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From the equation (19), having now the form: 

2 4 6
0 0

2 4 6

35 14 15 15 5
0,

8 (1 ) (1 ) 16 16 16

Gr f Gr f c c c
S fP

b b b b b

 
− + − − + = 

 + +  κ κ
 

we find the half-length of the slip zone – parameter �: 
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and then the tangential contact stresses are: 
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By assuming the threshold value � = �� we have  
� = � and the shear contact stresses become: 
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(25) 

Since the condition ��� = �|��| is satisfied at any point 
of the contact region, we have the case of sliding friction. 

The results of numerical calculations are performed for 
the following dimensionless parameters: 

x x b= , 0 0r r b= , c c b= , U U b= , y y G=σ σ , 

xy xy G=τ τ , P P G= , S S G=  and 0.1f = , 4
0 10r −= , 

0.2=ν . 

Fig. 4 shows the distributions of the relative tangential 
shift of bodies boundaries �� in the slip zone under the 
pressure �� = 2 ∙ 10�� for the following values of the shear 
tractions �̅  :1 – �̅ = 10��; 2 – �̅ = 1,4 ∙ 10��; 3 – �̅ = 1,8 ∙

10��; 4 – �̅ = 2 ∙ 10��. The maximum value of the 
modulus of the relative tangential shift of boundaries 
increases with the shear tractions and reaches in the centre 
of the recess. 
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Fig. 4. Distributions of the relative tangential shift  

   of bodies boundaries 

 
Fig. 5. Half-length of the slip zone versus the external shear forces 

The nonlinear dependence of the half length of the slip 
size c� on the shear forces S� for some values of the pressure 
P:� 				1 − P� = 1,5 ∙ 10��; 		2 − P� = 2 ∙ 10��; 		3 − P� = 2,5 ∙
10�� is shown in Fig. 5. The horizontal straight lines 
of the plots correspond to the case of the stick contact 
of the bodies. We can see that the zone of sliding becomes 
greater with increasing shear forces. 

 
Fig. 6. Contact stresses in the stick-slip problem 

Symmetric distributions of stresses for illustrating the 
behavior of the slip-stick contact are demonstrated in Fig. 6. 
A graph of f|σ��| (curve 4) and graphs of tangential stresses 
τ��� (curves 1, 2, 3) versus x� = x/b are given under the 
pressure P� = 2 ∙ 10�� for the following values of the shear 
forces S�  :1 – S� = 10��; 2 – S� = 1,4 ∙ 10��; 3 – S� = 1,8 ∙

10��. It is seen that the normal stresses have a global 
maximum near the edges of the recess at the points 

̅ = ∓0,76. The maximum of tangential stresses is reached 
at the ends of the region of sliding. Moreover, the curves 
coincide in the slip zone (−�̅, �̅). Outside this interval, 
the tangential stresses ��̅� are less than �|���| and 
monotonically decrease to the limiting values at infinity. 

6. CONCLUSIONS 

In the paper we have investigated the complete fric-
tional contact of two half-planes containing local geometric 
perturbation of boundaries accounting for frictional slip 
under sequential remote normal and shear forces. The for-
mulated stick-slip contact problem is reduced to the singu-
lar integral equation for the function of the relative tangen-
tial shift of bodies boundaries which is next solved 
with the determination of the size of sliding. On the basis 
of the analytical solution to the above-mentioned problem 
the dependences of slip zone length and contact stresses 
on applied loadings are analyzed. 
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