PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of thermosensitivity of materials on the temperature of a pad/disc system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A heat generation problem due to friction in a pad/disc brake system is studied. A linear problem is confronted and compared with a non-linear in which thermophysical properties of materials are temperature-dependent. To examine temperature of the pad and the disc during a single and a twofold braking process, axisymmetric FE contact model was used. The obtained results revel insignificant temperature differences at specified axial and radial positions of the components of the friction pair. It was remarked that the level of discrepancies between the constant and the thermosensitive materials correspond with the coefficient of thermal effusivity.
Rocznik
Strony
46--53
Opis fizyczny
Bibliogr. 22 poz., Wykr.
Twórcy
autor
Bibliografia
  • 1. Adamowicz A., Grzes P. (2011a), Analysis of disc brake temperature distribution during single braking under nonaxisymmetric load, Applied Thermal Engineering, Vol. 31, No. 6-7, 1003-1012.
  • 2. Adamowicz A., Grzes P. (2011b), Influence of convective cooling on a disc brake temperature distribution during repetitive braking, Applied Thermal Engineering, Vol. 31, No. 14-15, 2177-2185.
  • 3. Aderghal N., Loulou T., Bouchoucha A., Rogeon P. (2011), Analytical and numerical calculation of surface temperature and thermal constriction resistance in transient dynamic strip contact, Applied Thermal Engineering, Vol. 31, No. 8-9, 1527-1535.
  • 4. Chichinadze A. V., Braun E. D., Ginsburg A. G., et al.(1979), Calculation, test and selection of frictional couples, Nauka, Moscow, (in Russian).
  • 5. Ginzburg A. H. (1973), Theoretical and experimental bases for calculation of unitary process of braking by means of system of the equations of thermal dynamics of friction, In: Optimum use of frictional material in units of friction of machines, Nauka, Moscow, 93-105, (in Russian).
  • 6. Grzes P. (2009), Finite element analysis of disc temperature during braking process, Acta Mechanica et Automatica, Vol. 3, No. 4., 36-42.
  • 7. Grzes P. (2009), Finite element analysis of disc temperature during braking process, Acta Mechanica et Automatica, Vol. 3, No. 4., 36-42.
  • 8. Grzes P. (2010), Finite element analysis of temperature distribution in axisymmetric model of disc brake, Acta Mechanica et Automatica, Vol. 4, No. 4., 3-28.
  • 9. Grzes P. (2011), Partition of heat in 2D finite element model of a disc brake, Acta Mechanica et Automatica, Vol. 5, No. 2, 35-41.
  • 10. Lee K., Barber J. R. (1994), An Experimental Investigation of Frictionally-Excited Thermoelastic Instability in Automotive Disk Brakes Under a Drag Brake Application, Journal of Tribology, Vol. 116, No. 3, 409-414.
  • 11. Nosko A. L., Belyakov N. S., Nosko A. P. (2009), Application of the generalized boundary condition to solving thermal friction problems, Journal of Friction and Wear, Vol. 30, No. 6, 455-462.
  • 12. Scieszka S. F., (1998) Hamulce cierne – zagadnienia materiałowe, konstrukcyjne i tribologiczne, ITE, Radom.
  • 13. Scieszka S., Zolnierz M. (2007) The effect of the mine winder disc brake's design feature on its thermoelastic instability. Part I. Set-up for finite element modelling and numerical model verification, Problems of Machines Operation and Maintenance Vol. 42, No. 3, 111-124.
  • 14. Scieszka S., Zolnierz M. (2007), The effect of the mine bility. Part II. Finite element simulation, Problems of Machines Operation and Maintenance Vol. 42, No. 4, 183-193.
  • 15. Sergienko V. P., Tseluev M. Yu., Kupreev A. V. (2009), Numerical simulation of operation heat modes of multidisc oil-cooled vehicle brake. Part 1. Heat problem solution, Journal of Friction and Wear, Vol. 30, No. 5, 341-349.
  • 16. Talati F., Jalalifar S. (2009), Analysis of heat conduction in a disk brake system, Heat and Mass Transfer, Vol. 45, No. 8, 1047-1059.
  • 17. Thuresson D. (2004), Influence of material properties on sliding contact braking applications, Wear, Vol. 257, No. 5-6, 451-460.
  • 18. Wawrzonek L., Bialecki R.A. (2008), Temperature in a disk brake, simulation and experimental verification, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 18, No. 3-4, 387-400.
  • 19. Yevtushenko A., Grzes P. (2010), FEM-modeling of the frictional heating phenomenon in the pad/disc tribosystem (a review), Numerical Heat Transfer Part A, Vol. 58, No. 3, 207-226.
  • 20. Yevtushenko A., Grzes P. (2011), Finite element analysis of heat partition in a pad/disc brake system, Numerical Heat Transfer Part A, Vol. 59, No. 7, 521-542.
  • 21. Yi Y.-B., Barber J. R., Hartsock D. L. (2002), Thermoelastic instabilities in automotive disc brakes-finite element analysis and experimental verification, in: J.A.C. Martins, D.P. Manuel, M. Marques (Eds.), Contact Mechanics, Kluwer, Dordrecht, 187-202.
  • 22. Zhu Z.-C., Peng Y.-Z., Chen G.-A. (2009), Threedimensional transient temperature field of brake shoe during hoist’s emergency braking, Applied Thermal Engineering, Vol. 29, No. 5-6, 932-937.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0062-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.