PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modeling of magnetorheological mounts in various operation modes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent advances in the research of magnetorheological/electrorheological (MR/ER) fluid based devices have indicated the opportunities for smart fluid based devices utilizing more than one operation mode. As such, the purpose of the present research is to draw attention to the existing models of magnetorheological (MR) mounts operating in two of the three fundamental operating modes, namely, the flow mode and the squeeze mode, and to highlight the potential applications of these modes in hydraulic mount applications. Therefore, in the paper the authors focus on recent applications of MR/ER fluids in that domain, and then proceed to summarizing the modeling principles for the two operation modes followed by a finite-element magnetostatic analysis of the mount's magnetic circuit, parameter sensitivity study and exemplary nu-merical simulations of each mode. The simulation results are converted into the frequency domain and presented in the form of dynamic stiffness and damping vs. frequency plots, respectively.
Słowa kluczowe
EN
mounts   modelling   MR  
PL
Rocznik
Strony
29--40
Opis fizyczny
Bibliogr. 35 poz., Wykr.
Twórcy
autor
autor
Bibliografia
  • 1. BWI Group, http://www.bwigroup.com
  • 2. FEMM, http://www.femm.info/wiki/HomePage
  • 3. Lord Corp., http://www.lord.com
  • 4. Adiguna H., Tiwari M., Singh R., Tseng H., Hrovat D.(2003), Transient response of a hydraulic engine mount, J Sound and Vib, Vol. 268, 217–248.
  • 5. Alexandridis A. A. (2007), The MagneRide System, In Proceedings of US Vehicle Dynamics Expo, Novi, Michigan.
  • 6. Baudendistel T.A., Tewani S.G., Shores J.M., Long M.W., Longhouse R.E., Namuduri C.S., Alexandridis A.A. (2003), Hydraulic mount with magnetorheological fluid, US Patent No. 6,622,995 B2.
  • 7. Baudendistel T.A., Tewani S.G., Long M.W, Dingle J. W.(2002), Hybrid hydraulic mount with magnetorheological fluid chamber, US Patent No. 6,414,761 B1.
  • 8. Bolter, R., Janocha H. (1998), Performance of long-stroke and low-stroke MR fluid dampers, In Proceedings of the SPIE Conference of the International Society of Optical Engineers(Ed. L. P. Davis), Washington, Vol. 3327, 303–313, Washington.
  • 9. Brigley M., Choi Y.–T., Wereley N., Choi S. B. (2007), Magnetorheological isolators using multiple fluid modes, J of Int Mater Sys and Struct, Vol. 12, No 18, 1143–1148.
  • 10. Carlson D. J., Chrzan M, J. (1994), Magnetorheological fluid dampers, US Patent No. 5277281.
  • 11. Farjoud A., Cavey R., Ahmadian M., Craft M. (2009), Magneto-rheological fluid behavior in squeeze mode, J Smart Mater and Struct, Vol. 18, 095001.
  • 12. Farjoud A., Ahmadian M., Mahmoodi N., Zhang X., Craft M. (2011), Non-linear modeling and testing of magnetorheological fluids in low shear rate squeezing flows, J Smart Mater and Struct,, Vol. 20, 085013.
  • 13. Gavin H. P., Hanson R.D., Filisko F.E. (1996a), Electrorheological dampers, Part 1: Analysis and design, ASME J of Appl Mech; Vol. 63, No 9, 669–75.
  • 14. Gavin H.P., Hanson R.D., Filisko F.E., (1996b), Electrorheological dampers, Part 2: Testing and modeling. ASME J of Appl Mech, Vol. 63, No 9, 676–82.
  • 15. Gopalswamy S., Linzell S. M., Jones G. L., Kruckemeyer W. C., Johnston G. L. (1999), Magnetorheological fan clutch, US Patent No. 5,896,965.
  • 16. Gołdasz J., Sapiński B. (2011), Model of a squeeze-mode magnetorheological mount, Solid State Phenomena, Vol. 177, 116–124.
  • 17. He S., Singh R. (2007), Transient response of hydraulic engine mount to a realistic excitation: improved non-linear models and validation, SAE Technical Paper, 2007-01-2365.
  • 18. Hong S. R., Choi S. B., Jung W. J., Jeong W. B. (2002), Vibration isolation using squeeze-mode ER mounts, J of Int Mater Sys and Struct, Vol. 7, No 13, 421–424.
  • 19. Hopkins P. N., Fehring J. D., Lisenker I., Longhouse R. E., Kruckemeyer W. C., Oliver M. L., Robinson F. M., Alexandridis A. A. (2001), Magnetorheological fluid damper, US Patent N. 6,311,810 B1.
  • 20. Jolly M. R., Bender J. W., Carlson J. D. (1998), Properties and applications of magnetorheological fluids, In Proceedings of the SPIE Conference of the International Society of Optical Engineers (Ed. L. P. Davis), Washington, Vol. 3327, 262–275.
  • 21. Jolly M. R., Carlson J. D. (1996), Controllable squeeze film damping using magnetorheological fluids, In Proceedings of the 5th International Conference on New Actuators, Bremen, 333–336.
  • 22. Kim G., Singh R. (1993), Nonlinear analysis of automotive hydraulic engine mount, Trans of the ASME, Vol. 115, 482–487.
  • 23. Kim K.-J., Lee Ch.-W., Koo J.-H. (2008), Design and modeling of semi-active squeeze film dampers using magnetorheological fluids, J Smart Mater and Struct, Vol. 17, doi: 10.1088/0964–1726/17/3/035006.
  • 24. Kowalczyk K., Svaricek F., Bohn C., Karkosch H. (2004), An overview of recent automotive applications in active vibration control, In Proceedings of the RTO AVT Symposium on Habitability of Combat and Transport Vehicles, Prague, RTO-MP-AVT-110.
  • 25. Kruckemeyer W. C., Taeyoung H., Nehl T. W., Foister R. T. (2001), Magnetorheological piston assembly and damper, US Patent Application No. 2006/0260891 A1.
  • 26. Lee K. (1997), Numerical modelling for the hydraulic performance prediction of automotive monotube dampers, J Veh Sys Dyn, Vol. 28, 25–39.
  • 27. Minh N. T. (2009), A novel semi-active magnetorheological mount for vibration isolation, Ph.D. Dissertation.
  • 28. Oliver M. L., Kruckemeyer W. C., Jensen E. L., Smith R. G. (2003), Magnetorheological steering damper, US Patent No. 6,637,558 B2.
  • 29. Phillips R. W. (1969), Engineering applications of fluids with a variable yield stress, Ph. D. Dissertation.
  • 30. Singh R., Kim G., Ravindra P. (1992), Linear analysis of automotive hydromechanical mount with emphasis on decoupler characteristics, J Sound and Vib, Vol. 158, No. 2, 219–243.
  • 31. Sproston J. L., Rigby S. G., Wiliams E. W., Stanway R.(1994), A numerical simulation of electrorheological fluids in oscillatory compressive squeeze-flow, J. Phys D: Appl Phys, Vol. 2, No 27, 338–340.
  • 32. Stanway R., Simms N.D., Johnson A.R. (2000), Modelling and control of a magnetorheological vibration isolator, In Proceedings of the SPIE Conference of the International Society of Optical Engineers, Newport Beach, Vol. 3989, 184–193.
  • 33. Tang X., Wang X. J., Li W. H. (1998), Testing and modeling of an MR damper in the squeeze flow mode, In Proceedings of the 6th International Conference on ER Fluids, MR Suspensions and Their Applications (Ed. M. Nakano and K. Koyama), Singapore, 870–878.
  • 34. Wiliams E., Rigby S. G., Sproston J., Stanway R. (1993), Electorheological fluids applied to an automotive engine mount, J Non-Newtonian Fluid Mech, Vol. 47, 221−238.
  • 35. Zhang X., Zhang H., Ahmadian M., Guo K. (2011), Study on squeeze-mode magnetorheological engine mount with robust H-infinite control, SAE Technical Paper, 2011-01-0757.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0062-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.