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Summary: The paper presents the stabilization method ofipalypendulum in various inclinations. The theofytlee rro-
tion in a rapidly oscillating field has beapplied to explain the phenomenon of stabilizatiod to set conditions for thea-
bility of the pendulum. The paper shows resultsahputer simulations which confirm that the positamntrol of the peru-

lum in the open-loop is possible.

1. INTRODUCTION

The invertedpendulum, which is physical pendulu
whose center of mass lies above the point of sisépe
is very popular pendulum tested in automatics. Itnsex-
ample of a nonlinear system characterized by highabl-
ity. Due to its properties it is a good objdat testing dif-
ferent control algorithms. Beside the fact the eysis n-
teresting from a theoretical point of view, it hmany pric-
tical applications: stabilization of a walking rdb@ocket
flight control (Astrom and Murray, 2008), or reclgrpofu-
lar two-wheeled vehicle - "Segway".

Most of studies on inverted pendulum conc
a closedoop control. There is also a way to stabilize
pendulum in the opelvop control, where the pendulL
suspension point performs fast oscillations in veetical
direction (Kapica, 1951; Siemieniako and e£&owski,
2011). Oscillations of the suspension point inhibeizontal
direction gives an interesting result, namely tlosgibility
of stabilizing the pendulum between a horizontal harg-
ing position (Landau andifshitz, 2007; Siemieniako ar
Ciezkowski, 2011). It turns out that it is possiblegeneri-
ize the problem and demonstrate the possibilitgtabiliza-
tion of the pendulum in various positions with dsting
point of suspension at the appropriatglanwhich will be
the subject of this paper.

2. MODEL OF PENDULUM

The perfectly rigid rod has been taken as the m
of the pendulum, with mass m and length |. One erith@
pendulum is the point of suspension. The systeplaised
in a gravitationafield with a value of acceleration g. I. 1
shows the physical model of the pendulum. The sysias
been described by the Lagrange formalism.

The position of the suspension point of the penait
describes vector:

r, = (Acos(@t)sinf3 ) A cos@t )cof )) 1)

where: A — amplitude vibrations of the suspension pi
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N —the frequency of the vibrationp — angle, the direction
of vibration of the suspension po

ry

Ty

Fig. 1. Physical model of pendult

The position of the mass center of the pendulutiel
to the suspension is:

M =%I(sin6?, cod ) (2)

where:6 —the pendulum angle with respect to tl-axis.
Position of the mass center relative to the orifithe
coordinate system is:

rsm:rb

1, . 1 (3)
(EIS|nH+Acos@t)sm)6 )EI co8+A cosit )cg8( ))

+r0:

The kinetic energy is the sum of thanslational kinetic
energy of the mass center and the rotational kirextergy
of the pendulum relative to the mass ce

T=tm 241 1o0p02
2 sm 212 4
%m(SAZQZ sin? (2t )+ 61 @1 - 3AQ sinB -8 )sint )))

The potential energy of system

V = gm(Acos(B ) cos( )m%l cod )) (5)



The Lagrangian has the form:
L=T-V (6)

Substituting (4) and (5) into equation (6) thenvsaj
the Euler-Lagrange equation we get:

dt 98 06 2l

d oL _a_L:>6;:3(A{.72 sin(B-8)cos(@ }g sirg )1(7)

The obtained equation is an equation of motionhef t
pendulum.

3. MOTION ANALY SISOF PENDULUM
ASTHE MOTION IN A RAPIDLY OSCILLATING
FIELD

Oscillating change of the suspension point's pmsite-
alizes the pendulum’s control. It is assumed that fre-
guency of these oscillations is large compared wiith
oscillation frequency of the system if the movemeaies
place only under the influence of the gravity.dtalso as-
sumed that the changes of the pendulum’s positiaused
by these vibrations, are small. Such an objectbearegard-
ed as an object moving in a rapidly oscillatinddie
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Fig. 2. Numerical simulation result

Fig. 2 (Siemieniako and &ikowski, 2011) shows the
simulation results of the pendulum angle’s timeiatéon.
This is a solution of the equation (7) for values:

|=1m,g=9.81" A= 0.m 2= 56% p= ead
S S
6(0) = 0.3rad 8 (0)= 029
S

It can be noted that the swing of the pendulumoisi€
posed of vibrations of high amplitude and low frenoy
(hereinafter referred to a#(t)) and small oscillations
of high frequency{(t)). The presence of small oscillations
appears to be consistent with the assumptionkeifove-
ment takes place in a constant gravity field anplidig
oscillating field which enforces the oscillationkthe sus-
pension point. If the motion is a combination obtascilla-
tions, the position of the pendulum can be writien

o(t) = d(t) +£(t) (8)
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where @ (t) describes the "smooth" movement of the pen-
dulum, averaged due to the rapid oscillations.

Substituting (8) to (7) and expanding the resultha
first-order Taylor series because of thésmall oscillations)
the following is obtained:

_3A{Q* cosB-@ )cot(2 ),

2
3AQ? sin(B- @) cos(2 ), 8¢ coze ) § sidf
2 2 2

Acceleration of the suspension point is proportiona
to 2% and changes quickly. It can be concluded thatéthe
will meet the same relationship. Only the secomohtef the
equation (9) satisfies these conditions (first tésnpropor-
tional toé, so it is small). So you can write:

d+&=

9)

_3AQ%sin(B-®)cos(2 )
2

¢ (10)

The value ofd is equal to the other terms of the equa-
tion (9):

di:_SAf!f cos(,62’|—<D)cost(Q)+ 8¢ co®t )

3gsin@) (1)

2

Double-integrating expression (10) under the assump
tion that® changes so slowly that we can consider them as
constants, we get:
_3Acos{ )sinB-@ )

<= 2

(12)

Substituting equation (12) to (11) and averagire rids
sult due to the rapid oscillationsog(t2) = 0, cos (t2)? =
1/2) we obtain the equation:

9A2!225in(2(ﬂ—<737))+ 3 sin@ )

@ = .
16l 2

(13)

To show why the pendulum is stable it has to berdet
mined what the effective potential energy of thetem is:

AUy = Ue,=——1mlzfd5d¢ =
do 3

iz =-
3
(14)
U, =lglmcos(¢> )—i A’mQ? cos(26-@ )
2 32
Fig. 3 illustrates the graph of function (14) fofferent
values of anglep, for fixed g,m,[,A,Q equal to:

g=981m/s?, m=08kg, l=1m, A=01m,
N =70rad/s.

The meaning of the line is as follows:

solid line: g = 0;

dotted line;g = m/4;
— "dot-dash” line;g = /2;
— dashed lineg = 3/4m.

As shown in the Fig. 3 each plot has a minimumhef t
potential (and thus satisfies the condition of sitbility),
which for fixed parameterg, m, [, A, 2 is dependent on the
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angleg. This relationship has been found, what will be th
subject of the next chapter.

Ugt(®)

Fig. 3. Effective potential of the pendulum for variousued off
4. STABILITY CONDITIONS

Conditions for a minimum potential at a given pang:
the first derivativeU,; is zero and the second derivative of

the effective potential energy is positive at {hisnt.
The first derivative of equation (14) is:

U, 3 . 1 .
= - A’mQ? 26-®))—-—=dl 15
30 - 1o Sin(2(6-@))-— gmsin@) (15)
Denoting:
3A%?
A=
4ql (16)
the extreme condition can be written as:
oU _ 1, .
=0 = sin@)+=Asin(2B-® )= C 17
30 sin@)+2 Asin(2(3-2)) (17)

and can be solved for varialfe Solution of equation (17)
gives the result;

B=P.. %(m - arcsin(z—Si/’;("7 )Y)

The second derivative of the potential b= £, is:

v 1 4sirt @)
Tﬂj | = 8(3A2mQZ\/T —4gimcos)  (19)

Requesting it to be greater than zero, conditiamgte
existence of a minimum of effective potential are:

)

(18)

A > J4sir? @)+ co @ ) for @ D(o,izT) (20)
)

A1>2 for @ =’ET (21)
D)

12 2sin@) fo @O (izT,n) (22)
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These conditions can be compared with the refuits
vertical and horizontal oscillations containedhe publica-
tion Siemieniako and €ikowski (2011): when the
gle® = 0 (the case of vertical oscillations) then according
to (20) the stability condition igt > 1.

When® = arccos (—1/1) (the case of horizontal oscil-
lations) then according to (22) the stability cdiwi is:
A>1.

In both cases, the stability conditions are the esa®m
in the publication of the above mentioned authors.

4.1. Effective potential for afixed parameter 4

The parametek, which determines the stability of the
system is a function of variables describing thatiailed
object (this variable is the length of the penduylum
and variables controlling the pendulum, @ ). Equations
(20), (21), (22) show that for any angkewithin the range
< 0, ) the stability condition can be writteh:> 2.

This condition is satisfied for the example values:
l=1m, g¢g=981m/s?, A=01m, 2=70rad/s,
for which the parameterd =3,74618. The above-
mentioned values and the pendulum mass 0,1 kg will
be used in further analysis of the system.

Fig. 4 shows a graph of the pendulum effectivepot
tial energy as a function of the angle of oscilat
the suspension poilt and the angl@ with the rest system
parameters set above.

e %

00
Fig. 4. Effective potential of the pendulum in functiSnrand®

00 05 1.0 15 2.0 25 3.0

&
Fig. 5. The relationship betweghand®,
at which the pendulum is at a minimuinpatential

The plot's colors reflect the absolute value of finst
derivative ofU,; — the darker the color, the lower the value
of the derivative. With these colors function exrtes are



more visible. The longest dark bar at the graphesgnts
the area where the potential has a minimum valuawibg
a relationship (18) one can show this curve asgn%:

The dashed line in Fig. 5 describes the relatignshi
B = ®. The function (18) shows that with increasinghe
function more and more ,closes" to the relationghip .
This behavior becomes evident after analysis ofdh@ula
(14) describing th&l¢. The first term of this formula comes
from the gravitational potential and the other from
the oscillations. With increasirfigthe second term begins to
dominate over the gravity and takes the highesblates
value (for fixed)), whenf = @.

5. NUMERICAL SIMULATION RESULTS

If the parameteir does not change in the experiment
(and of course satisfies the stability conditiorthg only
problem to solve is to determine the angle at whiehwvant
to set the pendulum and then, according to (18grdene
the angles,,; which will determine the direction of vibra-
tion of the pendulum suspension point. This chapitirbe
presenting numerical results for the specific valoé the
angled. The parameters of the systeng, [, 4,102)
are the same as those listed in Section 4.1, thenpmer
A =3,74618. The simulation is the numerical solution
of equation (7).

5.1. Examplel: & = /4

The direction of oscillations according to (18):

B = 0,5918.
Initial  conditions: 0(0) = /4 + 0,1 rad, 6(0) =
0rad/s.
0.85
-l
; ::; - | i ™% - = - B - -Ar - =M i -7
0.75
0.F 0 1 2 3 4 5 6

t [s]
Fig. 6. Numerical simulation result of equation (7)

0.85

0.75 0.80
8 [rad]

Fig. 7. Phase portrait of the simulation
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Figs. 6 and 7 show the simulation results of thedpe
lum motion. As you can see the pendulum inclined
to a certain angle starts to oscillate around tbe p®int,
in this case equal to/4. Effective potential for this case has
the form as shown:

1.0

Ueﬂ‘bl

24 -2 0
P
Fig. 8. Effective potential of the pendulum

4

As shown in Fig.8, the potential has a minimum tfor
desired angle.

5.2. Example2: & = /2

The direction of oscillations according to (18):
B =1,289.
Initial
Orad/s.

conditions: 6(0) = /24 0,1rad, 6(0) =

1.65

1.6

o [rad]
(S5

1.55

1.5

t[s]
Fig. 9. Numerical simulation result of equation (7)

4 [rad/s)

1.60
@ [rad]

Fig. 10. Phase portrait of the simulation

1.65

1.50

1.55
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1.0

Ug(®)

13
Fig. 11. Effective potential of the pendulum

These figures illustrate the results of the nunadric
simulation of the pendulum fob = /2. As you can see
the system behaves as planned. In Fig. 9, andletter on
the phase portrait can be seen increase of thel syfdast
oscillations relative to the first example. Theqgiuency of
fast oscillations seems to be the same in both pkeam

5.3. Example3: @ =3/4n

B =2,162,0(0) = 3/4m + 0,1 rad, (0) = 0 rad/s.
The following figures show the simulation results.

245

2.4
T

©
[P 4 I | N L Y| O | N | AT A N | O
< 4 ,

2.3

0 1 2 3 4 5 6
t[s]

Fig. 12. Numerical simulation result of equation (7)

2.30 2.35 2.40 2.45
0 [rad]

Fig. 13. Phase portrait of the simulation
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Fig. 14. Effective potential of the pendulum

The figures above illustrate the results of nunaric
simulation of the pendulum far = 3 /4.

6. NUMERICAL SIMULATION
IN THE PRESENCE OF FRICTION FORCE
AND RANDOM DISTURBANCES

The results presented in chapter five, illustrabdy-

ior of the perfect system, that is, without enedigsipation
and noise. In the real world, forces of frictiondamndom
disorders cannot be eliminated. To make the systeme
realistic, numerical simulation in presence of non-
conservative forces was performed.

The Euler-Lagrange equation then takes the form:
doL dL :
———-—z=-kO+ke(t
wo6 og orkE)
where:k; — viscous damping coefficient, — noise coeffi-
cient.

e(t) is a random disturbance and is assumed to obey

_E(t)z

normal distribution with density functiogi:ﬂe 2

The average value of(t) is zero. The perturbation
changes randomly at each simulation time step. Ffy.
illustrates an example of the functie¢t).

(23)

0 1 2 3 4 5 6
t

Fig. 15. Random perturbations of the system

Solution of the equation (23) gives the result:

é_S(AQZ sin(3-8)co(2 ) g si §)) _;ig+é£g(t) (24)
2 I‘m  I"m




The obtained equation is an equation of the pemdsiu
motion in the presence of friction force and randdistur-
bances.

While the viscous friction should help to maintdhe
pendulum in the desired position, a random distucbacan
cause loss of the system’s stability. This will pap when
the pendulum “jumps out” from an effective potehtizell
on the result of existing disturbances. So thdcatitvalue
of the parametek, depends on the depth of potential well.
The parametek, = 0,03Nm will be used in further analy-
sis of the system. For such value of the coeffickgnsome
distortions have been noticed, but the system tiabesen

stable. The adopted value of the damping factor is:

k, = 0,02Nm. The initial conditions and the angteval-
ues are the same as in the examples in chapter 5.

6.1. Examplel: & = /4

0.85

@ [rad]

+ I

0.75

0 5 10 15 20
t(s]

Fig. 16. Numerical simulation result of equation (24)

As shown in Fig. 16, high-amplitude oscillations ar
damped. Small amplitude and high frequency vibratio
still occur. The presence of small oscillationghie result
of the suspension point’s vibrations. Force causgedhese
vibrations is so large that the friction is noteald dampen
the pendulum. You can verify if the random distumt=
force cause these small oscillations. Fig. 17 shibersesult
of the simulation, for the paramekgr= ONm.

0.85

@ [rad]

& 1=

0.75]

0 5 10 15 20
t[s]

Fig. 17. Numerical simulation result of equation (24) fgr= 0

As shown in Fig. 17 the system still performs small
brations. The simulations show that the randomefantro-
duces only a small disturbance to vibration.
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To demonstrate the resistance of the system tardist
bances, additional simulations were performed ffer pa-
rameterk, = 0,3Nm andk, = 1,7Nm. The results of these
simulations are illustrated in Figs. 19 and 20.

0.80 0.85
A [rad]

Fig. 18. Phase portrait of the simulation with random noise

0.75

09
0.85
=)
@
> 'i 4 | . l i |
0.75 L
0.7 ;
0 5 10 15 20
t [s]
Fig. 19. Numerical simulation result of equation (24)
fork, = 0,3Nm

0 5 10 15 20
t[s]
Fig. 20. Numerical simulation result of equation (24)
fork, = 1,7Nm

Fig.19 shows that 10-times greater disturbance doés
cause loss of stability. Fdr, = 1,7Nm (Fig. 20) system

isno longer stable and the pendulum "jumps" to the

neighboring potential well (see Fig. 8).
6.2. Example2: & = /2

As in the first example, the system performs snmafid
oscillations around the set point. Just as in tee avithout
friction and disturbances, the speed of penduluxillas
tions is greater than in exampbe= /4 .
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1.65

1.6

0 [rad]

(S35

1.55]

1.5

10 15 20
t[s]
Fig. 21. Numerical simulation result of equation (24)

0 5

1.50 155 160 165
8 [rad]
Fig. 22. Phase portrait of the simulation

6.3. Example3: & = 3/4m

2.45

@ [rad]

0 5 10 15 20
t[s]
Fig. 23. Numerical simulation result of equation (24)

@ [rad/s]

2.30 235 2.40 2.45
0 [rad]
Fig. 24. Phase portrait of the simulation
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The figures above illustrate the results of nunaric
simulation of the pendulum far = 3 /4.

7. SUMMARY

The results presented in this paper demonstratpdbe
sibility of stabilizing the pendulum in various limations.
The system is stable if its parameters satisfycthraditions
that have been set in chapter four. In additiosdlutions
for the "ideal" system, the possibility of stahitig the pen-
dulum in the presence of friction force and randdistur-
bances has been demonstrated. It is shown thatytem
is highly resistant to disturbances, which increasbe
chances of an experimental realization of the syste
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