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Summary: The paper presents the stabilization method of physical pendulum in various inclinations. The theory of the m
tion in a rapidly oscillating field has been 
bility of the pendulum. The paper shows results of computer simulations which confirm that the position control of the pend
lum in the open-loop is possible. 

1. INTRODUCTION 

The inverted pendulum, which is physical pendulum, 
whose center of mass lies above the point of suspension 
is very popular pendulum tested in automatics. It is an e
ample of a nonlinear system characterized by high instabi
ity. Due to its properties it is a good object 
ferent control algorithms. Beside the fact the system is i
teresting from a theoretical point of view, it has many pra
tical applications: stabilization of a walking robot, rocket 
flight control (Astrom and Murray, 2008), or recently pop
lar two-wheeled vehicle - "Segway". 

 Most of studies on inverted pendulum concern 
a closed-loop control. There is also a way to stabilize the 
pendulum in the open-loop control, where the pendulum 
suspension point performs fast oscillations in the vertical 
direction (Kapica, 1951; Siemieniako and Cięż

2011). Oscillations of the suspension point in the horizontal 
direction gives an interesting result, namely the possibility 
of stabilizing the pendulum between a horizontal and han
ing position (Landau and Lifshitz, 2007;  Siemieniako and 
Ciężkowski, 2011). It turns out that it is possible to genera
ize the problem and demonstrate the possibility of stabiliz
tion of the pendulum in various positions with oscillating 
point of suspension at the appropriate angle, which will be 
the subject of this paper.  

2. MODEL OF PENDULUM 

The perfectly rigid rod has been taken as the model 
of the pendulum, with mass m and length l. One end of the 
pendulum is the point of suspension. The system is placed 
in a gravitational field with a value of acceleration g. Fig
shows the physical model of the pendulum. The system has 
been described by the Lagrange formalism.  

The position of the suspension point of the pendulum 
describes vector: 

b ( cos( )sin( ), cos( )cos( ))A t A tΩ β Ω β=r
 

where: � – amplitude vibrations of the suspension point,
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Fig. 1. Physical model of pendulum

The position of the mass center of the pendulum relative 
to the suspension is: 
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where: � – the pendulum  angle with respect to the y
Position of the mass center relative to the origin of the 

coordinate system is: 
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The kinetic energy is the sum of the tr
energy of the mass center and the rotational kinetic energy 
of the pendulum relative to the mass center:

2 2 2

. .
2 2 2

sm
1 1 1

1
(3 sin ( ) ( 3 sin( )sin( )))

2 2 12

6

T m ml

m A t l l A t

θ

Ω Ω θ θ Ω β θ Ω

= =

−

+

+ −

r &&

The potential energy of system is:
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Physical model of pendulum 

The position of the mass center of the pendulum relative 

(2) 

the pendulum  angle with respect to the y-axis. 
Position of the mass center relative to the origin of the 

( sin cos( )sin( ), cos cos( )cos( ))l A t l A tθ Ω β θ Ω β+ +
 

(3) 

The kinetic energy is the sum of the translational kinetic 
energy of the mass center and the rotational kinetic energy 
of the pendulum relative to the mass center: 

(3 sin ( ) ( 3 sin( )sin( )))m A t l l A tΩ Ω θ θ Ω β θ Ω−+ −
 (4) 

The potential energy of system is: 

( cos( )cos( ) cos( ))V gm A t lβ Ω θ  (5) 
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The Lagrangian has the form: 

L T V= −  (6) 

Substituting (4) and (5) into equation (6) then solving 
the Euler-Lagrange equation we get: 

23( sin( )cos( ) sin( ))

2

A td

dt l

L gL Ω βθ
θ

θ
θ

θ Ω− +∂ ∂= ⇒ =
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&&

&
 (7) 

The obtained equation is an equation of motion of the 
pendulum. 

3. MOTION ANALYSIS OF PENDULUM  
AS THE MOTION IN A RAPIDLY OSCILLATING 
FIELD 

Oscillating change of the suspension point's position re-
alizes the pendulum’s control. It is assumed that the fre-
quency of these oscillations is large compared with the 
oscillation frequency of the system if the movement takes 
place only under the influence of the gravity. It is also as-
sumed that the changes of the pendulum’s position, caused 
by these vibrations, are small. Such an object can be regard-
ed as an object moving in a rapidly oscillating field. 

 
Fig. 2. Numerical simulation result 

Fig. 2 (Siemieniako and Ciężkowski, 2011) shows the 
simulation results of the pendulum angle’s time-variation. 
This is a solution of the equation (7) for values: 

2
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It can be noted that the swing of the pendulum is com-
posed of vibrations of high amplitude and low frequency 
(hereinafter referred to as �(�)) and small oscillations 
of high frequency (�(�)). The presence of small oscillations 
appears to be consistent with the assumptions, if the move-
ment takes place in a constant gravity field and rapidly 
oscillating field which enforces the oscillations of the sus-
pension point. If the motion is a combination of two oscilla-
tions, the position of the pendulum can be written as:  

( ) ( ) ( )t t tθ Φ ξ= +  (8) 

where �(�) describes the "smooth" movement of the pen-
dulum, averaged due to the rapid oscillations.  

Substituting (8) to (7) and expanding the result in the 
first-order Taylor series because of the � (small oscillations) 
the following is obtained: 

2
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(9) 

Acceleration of the suspension point is proportional 
to  �� and changes quickly. It can be concluded that the � 
will meet the same relationship. Only the second term of the 
equation (9) satisfies these conditions (first term is propor-
tional to	�, so it is small). So you can write: 
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(10) 

The value of ��  is equal to the other terms of the equa-
tion (9): 
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(11) 

Double-integrating expression (10) under the assump-
tion that	� changes so slowly that we can consider them as 
constants, we get: 

3 cos( )sin( )

2

A t

l

Ω βξ Φ−= −
 

(12) 

Substituting equation (12) to (11) and averaging the re-
sult due to the rapid oscillations (cos����										 = 0, cos	(��)�															 =

1/2) we obtain the equation: 

2 2

2
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(13) 

To show why the pendulum is stable it has to be deter-
mined what the effective potential energy of the system is: 
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(14) 

Fig. 3 illustrates the graph of function (14) for different 
values of angle 
, for fixed �,�, 
,�,�	 equal to: 
	� = 9,81	�/��, � = 0,8	��, 
 = 1�, � = 0,1	�, 
� = 70	���/�. 

 The meaning of the line is as follows: 
− solid line: 
 = 0; 
− dotted line: 
 = �/4; 
− "dot-dash” line:	
 = �/2; 
− dashed line:	
 = 3/4�. 

As shown in the Fig. 3 each plot has a minimum of the 
potential (and thus satisfies the condition of the stability), 
which for fixed parameters �,�, 
,�,�	 is dependent on the 
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angle	
. This relationship has been found, what will be the 
subject of the next chapter. 

 
Fig. 3. Effective potential of the pendulum for various values of	� 

4. STABILITY CONDITIONS 

Conditions for a minimum potential at a given point are: 
the first derivative ��� is zero and the second derivative of 
the effective potential energy is positive at this point. 

The first derivative of equation (14) is: 
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Denoting: 
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the extreme condition can be written as: 
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∂
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and can be solved for variable 
. Solution of equation (17) 
gives the result: 
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The second derivative of the potential for 
 = 
���	 is: 
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Requesting it to be greater than zero, conditions for the 
existence of a minimum of effective potential are: 

I) 

2 24sin ( ) cos ( ) for 0, )
2

πΦλ Φ Φ ∈> +
 

(20) 

II) 

2 for
2

πλ Φ> =
 

(21) 

III) 

2sin( ) fo ( ,
2

r )λ Φ πΦ π≥ ∈
 

(22) 

 These conditions can be compared with the results for 
vertical and horizontal oscillations contained in the publica-
tion Siemieniako and Ciężkowski (2011): when the 
gle	� = 0 (the case of vertical oscillations) then according 
to (20) the stability condition is: � > 1. 

When � = arccos	(−1/�) (the case of horizontal oscil-
lations) then according to (22) the stability condition is: 
� > 1. 

In both cases, the stability conditions are the same as 
in the publication of the above mentioned authors. 

4.1. Effective potential for a fixed parameter � 

 The parameter �, which determines the stability of the 
system is a function of variables describing the controlled 
object (this variable is the length of the pendulum) 
and variables controlling the pendulum (�,�	). Equations 
(20), (21), (22) show that for any angle � within the range 
< 0,�) the stability condition can be written: � > 2. 

This condition is satisfied for the example values: 

 = 1�, � = 9,81	�/��, � = 0,1	�, � = 70	���/�, 
for which the parameter � = 3,74618. The above-
mentioned values and the pendulum mass � = 0,1	�� will 
be used in further analysis of the system.  

 Fig. 4 shows a graph of the pendulum effective poten-
tial energy as a function of the angle of oscillations 
the suspension point 
 and the angle � with the rest system 
parameters set above.  

 
Fig. 4. Effective potential of the pendulum in function � and � 

 
Fig. 5. The relationship between	β and Φ,  
            at which the pendulum is at a minimum of potential 

The plot’s colors reflect the absolute value of the first 
derivative of ��� – the darker the color, the lower the value 
of the derivative. With these colors function extremes are 
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more visible. The longest dark bar at the graph represents 
the area where the potential has a minimum value. Drawing 
a relationship (18) one can show this curve as in Fig. 5. 

The dashed line in Fig. 5 describes the relationship 
	β = Φ. The function (18) shows that with increasing	λ, the 
function more and more „closes" to the relationship	β = Φ. 
This behavior becomes evident after analysis of the formula 
(14) describing the U��. The first term of this formula comes 
from the gravitational potential and the other from 
the oscillations. With increasing λ the second term begins to 
dominate over the gravity and takes the highest absolute 
value (for fixed	λ), when	β = Φ. 

5. NUMERICAL SIMULATION RESULTS 

If the parameter λ does not change in the experiment 
(and of course satisfies the stability conditions), the only 
problem to solve is to determine the angle at which we want 
to set the pendulum and then, according to (18), determine 
the angle 
��� which will determine the direction of vibra-
tion of the pendulum suspension point. This chapter will be 
presenting numerical results for the specific values of the 
angle	Φ. The parameters of the system (�,�, 
,�,�) 
are the same as those listed in Section 4.1, the parameter 
λ = 3,74618. The simulation is the numerical solution 
of equation (7). 

5.1. Example 1: � = �/� 

The direction of oscillations according to (18):  

 = 0,5918. 

Initial conditions: ��0� = �/4 + 0,1	���, ���0� =

0	���/�. 

 
Fig. 6. Numerical simulation result of equation (7) 

 
Fig. 7. Phase portrait of the simulation 

Figs. 6 and 7 show the simulation results of the pendu-
lum motion. As you can see the pendulum inclined 
to a certain angle starts to oscillate around the set point, 
in this case equal to	�/4. Effective potential for this case has 
the form as shown:  

 
Fig. 8. Effective potential of the pendulum 

As shown in Fig.8, the potential has a minimum for the 
desired angle. 

5.2. Example 2: � = �/� 

The direction of oscillations according to (18):  


 = 1,289. 
Initial conditions: ��0� = �/2 + 0,1	���, ���0� =

0	���/�. 

 
Fig. 9. Numerical simulation result of equation (7) 

 
Fig. 10. Phase portrait of the simulation 
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Fig. 11. Effective potential of the pendulum 

These figures illustrate the results of the numerical 
simulation of the pendulum for � = �/2. As you can see 
the system behaves as planned. In Fig. 9, and even better on 
the phase portrait can be seen increase of the speed of fast 
oscillations relative to the first example. The frequency of 
fast oscillations seems to be the same in both examples.  

5.3. Example 3: � = �/��  


 = 2,162, ��0� = 3/4� + 0,1	���, ���0� = 0	���/�. 
The following figures show the simulation results. 

 
Fig. 12. Numerical simulation result of equation (7) 

 
Fig. 13. Phase portrait of the simulation 

 
Fig. 14. Effective potential of the pendulum 

The figures above illustrate the results of numerical 
simulation of the pendulum for	� = 3/4�. 

6. NUMERICAL SIMULATION   
IN THE PRESENCE OF FRICTION FORCE  
AND RANDOM DISTURBANCES 

 The results presented in chapter five, illustrate behav-
ior of the perfect system, that is, without energy dissipation 
and noise. In the real world, forces of friction and random 
disorders cannot be eliminated. To make the system more 
realistic, numerical simulation in presence of non-
conservative forces was performed. 

The Euler-Lagrange equation then takes the form: 

1 2 ( )
d L L

k k t
dt

θ ε
θθ

∂ ∂− = − +
∂∂

&

&
 (23) 

where:	�	 – viscous damping coefficient, �� – noise coeffi-
cient. 

�(�) is a random disturbance and is assumed to obey 

normal distribution with density function: 
	

√��
 
��(�)�

� . 

The average value of �(�) is zero. The perturbation 
changes randomly at each simulation time step. Fig. 15 
illustrates an example of the function	�(�). 

 
Fig. 15. Random perturbations of the system 

Solution of the equation (23) gives the result: 

2

2
2

2
13 33( sin( )cos( ) si (

)
n

(
))

2

k kA t g

l l m m
t

l

Ωθ β θ Ω θ εθ= − + − +&& &  (24) 
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The obtained equation is an equation of the pendulum’s 
motion in the presence of friction force and random distur-
bances. 

While the viscous friction should help to maintain the 
pendulum in the desired position, a random disturbance can 
cause loss of the system’s stability. This will happen when 
the pendulum “jumps out” from an effective potential well 
on the result of existing disturbances. So the critical value 
of the parameter �� depends on the depth of potential well. 
The parameter �� = 0,03!� will be used in further analy-
sis of the system. For such value of the coefficient	��, some 
distortions have been noticed, but the system has still been 
stable. The adopted value of the damping factor is:  
�	 = 0,02!�. The initial conditions and  the angle 
 val-
ues are the same as in the examples in chapter 5. 

6.1. Example 1: � = �/�  

 
Fig. 16. Numerical simulation result of equation (24) 

As shown in Fig. 16, high-amplitude oscillations are 
damped. Small amplitude and high frequency vibrations 
still occur. The presence of small oscillations is the result 
of the suspension point’s vibrations. Force caused by these 
vibrations is so large that the friction is not able to dampen 
the pendulum. You can verify if the random disturbance 
force cause these small oscillations. Fig. 17 shows the result 
of the simulation, for the parameter�� = 0!�. 

 
Fig. 17. Numerical simulation result of equation (24) for �� = 0 

As shown in Fig. 17 the system still performs small vi-
brations. The simulations show that the random force intro-
duces only a small disturbance to vibration. 

To demonstrate the resistance of the system to distur-
bances, additional simulations were performed for the pa-
rameter �� = 0,3!� and �� = 1,7!�. The results of these 
simulations are illustrated in Figs. 19 and 20. 

 
Fig. 18. Phase portrait of the simulation with random noise 

 
Fig. 19. Numerical simulation result of equation (24)  
             for �� = 0,3��   

 
Fig. 20. Numerical simulation result of equation (24)  
             for �� = 1,7�� 

Fig.19 shows that 10-times greater disturbance does not 
cause loss of stability. For �� = 1,7!� (Fig. 20) system 
is no longer stable and the pendulum "jumps" to the 
neighboring potential well (see Fig. 8). 

6.2. Example 2: � = �/�   

As in the first example, the system performs small, rapid 
oscillations around the set point. Just as in the case without 
friction and disturbances, the speed of pendulum oscilla-
tions is greater than in example � = �/4 . 
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Fig. 21. Numerical simulation result of equation (24) 

 
Fig. 22. Phase portrait of the simulation 

6.3. Example 3: � = �/�� 

 
Fig. 23. Numerical simulation result of equation (24) 

 
Fig. 24. Phase portrait of the simulation 

 

The figures above illustrate the results of numerical 
simulation of the pendulum for	� = 3/4�. 

7. SUMMARY 

The results presented in this paper demonstrate the pos-
sibility of stabilizing the pendulum in various inclinations. 
The system is stable if its parameters satisfy the conditions 
that have been set in chapter four. In addition to solutions 
for the "ideal" system, the possibility of stabilizing the pen-
dulum in the presence of friction force and random distur-
bances has been demonstrated. It is shown that the system 
is highly resistant to disturbances, which increases the 
chances of an experimental realization of the system. 
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