PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic compression tests - current achievements and future development

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a modified arrangement of the DICT technique was introduced. Miniaturization of bar and use of shadow principle to make a measurement of displacement allow to obtain strain rate up to 2.2×105s-1. Commonly used methods of elimination of friction, inertia and adiabatic heating were presented. In order to estimate the rate sensitivity of a material (tantalum), quasi-static and SPHB tests were performed at room temperature within the rate spectrum ranging from 5×10-4s-1 to 103s-1. The final true stress versus true strain curvesat different strain rates were corrected to a constant temperature and zero friction.
Rocznik
Strony
235--248
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland, wmocko@ippt.gov.pl
Bibliografia
  • 1. H. Kolsky, An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading, Proc. Phys. Soc. London, 62B, 676, 1949.
  • 2. U. S. Lindholm, Some Experiments with the Split Hopkinson Pressure Bar, J. Mech. Phys. Solids, 12, 5, 317, 1964.
  • 3. E. D. H. Davies, S. C. Hunter, The Dynamic Compression Testing of Solids by the Method of the Split Hopkins Pressure Bar, J. Mech. Phys. Solids, 11, 155, 1963.
  • 4. U. S. Lindholm, L. M. Yeakley, Dynamic Deformation of Single and Polycrystalline Aluminium, J. Mech. Phys. Solids, 13, 41, 1965.
  • 5. J. Harding, E. O. Wood, J. D. Cambell, Tensile Testing of Materials at Impact Rates of Strain, J. Mech. Eng. Sci., 2, 88, 1960.
  • 6. T. Nicholas, Tensile Testing of Materials at High Rates of Strain, Experimental Mechanics, 21, 177, 1981.
  • 7. J. Duffy, J. D. Campbell, R. M. Hawley, On the Use of a Torsional Split Hopkinson Bar to Study Rate Effects in 1100-0 Aluminium, J. Appl. Mech., 93, 3, 83, 1971.
  • 8. P. E. Sensey, J. Duffy, R. M. Hawley, Experiments on Strain Rate History and Temperature Effects During the Plastic Deformation of Close-Packed Metals, J. Appl. Mech., Trans. ASME, 45, 60, 1978.
  • 9. J. D. Campbell, W. G. Ferguson, The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel, Phil. Mag., 81, 63, 1970.
  • 10. J. Harding, J. Huddart, The Use of the Double-Notch Shear Test in Determining the Mechanical Properties of Uranium at Very High Rates of Strain, Proc. Conf. On Mech. Prop. at High Rates of Strain, Oxford, Conf. Ser., 47, 49, 1979.
  • 11. C. K. M. Dharan, F. E. Hauser, Determination of Stress – Strain Characteristic at Very High Strain Rates, Experimental Mechanics, 10, 370, 1970.
  • 12. F. Kamler, P. Niessen, R. J. Pick, Measurement of the Behavior of High Purity Copper at Very High Rates of Strain, Canad. J. Phys., 73, 295, 1995.
  • 13. J. Z. Malinowski, J. R. Klepaczko, A Unified Analytic and Numerical Approach to Specimen Behaviour in the SHPB, Int. J. Mech. Sci., 28, 381, 1986.
  • 14. D. A. Gorham, P. H. Pope, O. Cox, Sources of Error in Very High Strain Rate Compression Tests, Proc. Conf. on Mech. Prop. at High Rates of Strain, Oxford, Conf. Ser., 70, 151, 1984.
  • 15. U. S. Lindholm, Deformation Maps in the Region of High Dislocation Velocity, Proc. IUTAM Symposium on High velocity Deformation of Solids, Tokyo, 1977, Springer-Verlag, Berlin Haidelberg New York, 26, 1978.
  • 16. D. A. Gorham, Measurement of Stress-Strain Properties of Strong Metals at Very High Rates of Strain, Proc. Conf. On Mech. Prop. At High Rates Strain, Oxford, Conf. Ser., 47, 16, 1979.
  • 17. N. A. Safford, Materials Testing up to 10 5 s −1 Using a Miniaturized Hopkinson Bar with Dispersion Corrections, Proc. 2nd Int. Symp. on Intense Dynamic Loading and its Efects, Sichuan University Press, Chengdu, China, 378, 1992.
  • 18. D. Jia, K. T. Ramesh, A Rigorous Assessment of the Benefits of Miniaturization in the Kolsky Bar System, Experimental Mechanics, 44, 445, 2004.
  • 19. D. A. Gorham, A Numerical Method for the Correction of Dispersion in Pressure Bar Signals, J. Phys. E: Sci. Instrum., 16, 477, 1983.
  • 20. J. R. Klepaczko, Advanced Experimental Techniques in Materials Testing, [in:] New Experimental Methods in Material Dynamics and Impact, IPPT, Polish Academy of Sciences, Warsaw, p. 223, 2002.
  • 21. D. Ostwald, J. R. Klepaczko, P. Klimanek, Compression Tests of Polycrystalline α- Iron up to High Strains Over a Large Range of Strain Rates, J. Phys. IV, Colloque C3, France, 7, C3/385, 1997.
  • 22. K. T. Ramesh, S. Narasimhan, Finite Deformations and the Dynamic Measurement of Radial Strains in Compression Kolsky Bar Experiments, Int. J. Solids Structures, 33, 3723, 1996.
  • 23. J. Z. Malinowski, J. R. Klepaczko, Z. L. Kowalewski, Miniaturized compression test at very high strain rates by direct impact, Experimental Mechanics, 47, 451–463, 2007.
  • 24. J. M. Malinowski, J. R. Klepaczko, Z. L. Kowalewski, Modified version of the direct impact compression test technique, Dynamic Behaviour of Materials – J.R. Klepaczko Workshop, Metz, 13–15 maj 2009.
  • 25. J. Shioiri, K. Sakino, S. Santoh, Strain Rate Sensitivity of Flow Stress at Very High Rates of Strain, IUTAM Symp. Constitutive Relation in High/Very High Strain Rates, Kawata K. and Shioiri J. [Eds.], Springer-Verlag, Tokyo, 49, 1966.
  • 26. K. Sakino, J. Shioiri, Dynamic Flow Stress Response of Aluminum to Sudden Reduction in Strain Rate at Very High Strain Rates, J. Phys. IV, Colloque C3, France, 1, C3/35,1991.
  • 27. L. D. Bertholf, C. H Karnes, Two Dimensional Analysis of the Split Hopkinson Pressure Bar System, J. Mech. Phys. Solids, 23, 1, 1975.
  • 28. E. Siebel, Grundlagen zur Berechnung des Kraft und Arbeitbedorf bei Schmieden und Walzen, Stahl und Eisen, 43, 1295, 1923.
  • 29. R. S. Montgomery, Friction and Wear at High Sliding Speeds, Wear, 36, 275, 1976.
  • 30. B. Avitzur, Forging of Hollow Discs, Israel Journal of Technology, 2, 3, 295, 1964.
  • 31. M. Ashton, D. J. Perry, A Constitutive Relationship for Metals Compensated for Adiabatic and Friction Effects, Proc. 6th Int. Conf. on Mechanical and Physical Behaviour of Materials under Dynamic Loading, Kraków, 263, 2000.
  • 32. J. R. Klepaczko, F. E. Hauser, Radial Inertia in Compression Testing of Materials, Technical Report (internal), Division of Inorganic Materials, University of California, Berkeley, 1969.
  • 33. J. Z. Malinowski, Cylindrical Specimen Compression Analysis in the Split Hopkinson Pressure Bar System, Engng. Trans., 35, 4, 551, 1987.
  • 34. J. R. Klepaczko, J. Duffy, Strain Rate History Effects in Body-Center-Cubic Metals, ASTM-STP 765, 251, 1982.
  • 35. J. R. Klepaczko, Generalized Conditions for Stability in Tension Test, Int. J. Mech. Sci., 10, 297, 1968.
  • 36. S. L. Semiatin, J. J. Jonas, Formability and Workability of Metals, ASM, Metals Park, Ohio, 1984.
  • 37. D. A. Gorham, An Effect of Specimen Size in the High Strain Rate Compression Test, Proc. Conf. Dymat, Coll. C3, suppl. Journal de Physique III, 1, C3-411, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0055-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.