PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reverse ballistic impact studies of thin plate perforation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Full-scale ballistic experiments using tungsten rods and rolled homogeneous armour (RHA) steel plates are expensive to perform. For this reason, a study has been performed into the possibility of using less expensive, more easily available metals in small-scale laboratory experiments. The metal pairs chosen listed in order as armour/penetrator materials were: RHA steel/tungsten, dural/mild steel, and copper/aluminium. In order to be able to use as many diagnostics as possible (including high speed photography, VISAR, stress gauges) the reverse ballistic configuration was used. This configuration also allowed the determination of the high rate, low strain mechanical properties of mild steel to be determined. Finally, a comparison was made between experiment and numerical predictions made using a modified Armstrong-Zerilli constitutive model for the RHA steel/tungsten pair. The model was found to underpredict the penetration, probably because failure mechanisms were not incor- porated.
Słowa kluczowe
Rocznik
Strony
161--196
Opis fizyczny
Bibliogr. 51 poz., rys., wykr.
Twórcy
autor
autor
autor
autor
autor
Bibliografia
  • 1. M. E. Backman, W. Goldsmith, The mechanics of penetration of projectiles into targets, Int. J. Engng. Sci., 16, 1–99, 1978.
  • 2. M. F. Ashby, A first report on deformation-mechanism maps, Acta Metall., 20, 887–898, 1972.
  • 3. W. Goldsmith, S. A. Finnegan, Penetration and perforation processes in metal targets at and above ballistic limits, Int. J. Mech. Sci., 13, 843–866, 1971.
  • 4. S. G. Grantham, H. T. Goldrein, W. G. Proud, J. E. Field, Digital speckle radiography: A new ballistic measurement technique, Imaging Sci. J., 51, 175–186, 2003.
  • 5. L. C. Forde, W. G. Proud, S. M. Walley, P. D. Church, I. G. Cullis, Ballistic impact studies of a borosilicate glass, Int. J. Impact Engng., 37, 568–578, 2010.
  • 6. J. I. Bluhm, Stresses in projectiles during penetration, Proc. Soc. Exptl. Stress Analysis, 13, 2, 167–182, 1955.
  • 7. L. M. Barker, R. E. Hollenbach, Laser interferometer for measuring high velocities of any reflecting surface, J. Appl. Phys., 43, 4669–4675, 1972.
  • 8. T. W. Burke, W. F. Rowe, Bullet ricochet: A comprehensive review, J. Forensic Sci., 37, 1254–1260, 1992.
  • 9. T. W. Bjerke, G. F. Silsby, D. R. Scheffler, R. M. Mudd, Yawed long-rod penetration, Int. J. Impact Engng., 12, 281–292, 1992.
  • 10. R. L. Landingham, A. W. Casey, Final report of the light armor program, Report no. UCRL-51269, Livermore, CA, Lawrence Livermore Laboratory, 1972.
  • 11. H.-J. Ernst, K. Sterzelmeier, T. Wolf, R. Nusing ¨ , Reactive armor mechanisms against KE-threat: High explosives and electromagnetic forces, [in:] Proc. 17th Int. Symp. on Ballistics, vol. 1, pp. 71–78, van Niekerk C. [Ed.], The South African Ballistics Organisation, Moreleta Park, South Africa, 1998.
  • 12. G. Ben–Dor, A. Dubinsky, T. Elperin, On the ballistic resistance of multi-layered targets with air gaps, Int. J. Solids Structures, 35, 3097–3103, 1998.
  • 13. G. Ben–Dor, A. Dubinsky, T. Elperin, Effect of air gap and order of plates on ballistic resistance of two layered armor, Theor. Appl. Fract. Mech., 31, 233–241, 1999.
  • 14. T. J. Moynihan, J. C. LaSalvia, M. S. Burkins, Analysis of the shatter gap phenomenon in a boron carbide/composite laminate armor system, [in:] Proc. 20th Int. Symp. on Ballistics, National Defense Industrial Association, pp. 1096–1103, Carleone J., Orphal D. [Eds.], Lancaster, PA, 2002.
  • 15. Z. Rosenberg, E. Dekel, The relation between the penetration capability of long rods and their length to diameter ratio, Int. J. Impact Engng., 15, 125–130, 1994.
  • 16. D. L. Orphal, R. R. Franzen, Penetration mechanics and performance of segmented rods against metal targets, Int. J. Impact Engng., 10, 427–438, 1990.
  • 17. G. Birkhoff, D. P. MacDougall, E. M. Pugh, G. I. Taylor, Explosives with lined cavities, J. Appl. Phys., 19, 563–582, 1948.
  • 18. J. A. Zukas [Ed.], High Velocity Impact Dynamics, Wiley, New York, 1990.
  • 19. Z. Rosenberg, E. Dekel, Strength effects in long-rod penetration, [in:] Structures under Shock and Impact IV, pp. 137–148, Jones N., Brebbia C.A., Watson A.J. [Eds.], Computational Mechanics Publications, Southampton, UK, 1996.
  • 20. Z. Rosenberg, E. Dekel, On the role of material properties in the terminal ballistics of long rods, Int. J. Impact Engng., 30, 835–851, 2004.
  • 21. T. Børvik, M. Langseth, O. S. Hopperstad, K. A. Malo, Ballistic penetration of steel plates, Int. J. Impact Engng., 22, 855–886, 1999.
  • 22. T. Børvik, S. Dey, O. S. Hopperstad, M. Langseth, On the main mechanisms in ballistic perforation of steel plates at sub-ordnance impact velocities, [in:] Predictive Modeling of Dynamic Processes, pp. 189–219, Hiermaier S. [Ed.], Springer, Berlin, 2009.
  • 23. P. C. Chou, J. Hashemi, A. Chou, H. C. Rogers, Experimentation and finite element simulation of adiabatic shear bands in controlled penetration impact, Int. J. Impact Engng., 11, 305–321, 1991.
  • 24. J. Yu, X. Dong, J. Zhang, A study of adiabatic shear plugging in Ti6Al4V alloy, Key Engng. Mater., 177, 387–392, 2000.
  • 25. Y.-W. Lee, T. Wierzbicki, Fracture prediction of thin plates under localized impulsive loading. 1: Dishing, Int. J. Impact Engng., 31, 1253–1276, 2005.
  • 26. L. W. Kennedy, O. E. Jones, Longitudinal wave propagation in a circular bar loaded suddenly by a radially distributed end stress, Trans. ASME: J. Appl. Mech., 36, 470–478, 1969.
  • 27. D. A. Gorham, Measurement of stress-strain properties of strong metals at very high strain rates, Inst. Phys. Conf. Ser., 47, 16–24, 1980.
  • 28. L. C. Forde, N. K. Bourne, Z. Rosenberg, R. Cornish, N. J. Lynch, I. G. Cullis, P. D. Church, Experimental investigation and analysis of penetration in oblique impact, [in:] Proc. 16th Int. Symp. on Ballistics, vol. 3, pp. 641–649, American Defense Preparedness Association, Arlington, Virginia, 1996.
  • 29. N. K. Bourne, Z. Rosenberg, D. J. Johnson, J. E. Field, A. E. Timbs, R. P. Flaxman, Design and construction of the UK plate impact facility, Meas. Sci. Technol., 6, 1462–1470, 1995.
  • 30. S. P. Marsh, LASL Shock Hugoniot Data, University of California Press, Berkeley, CA, 1980.
  • 31. M. B. Lesser, Analytic solutions of liquid-drop impact problems, Proc. R. Soc. Lond. A, 377, 289–308, 1981.
  • 32. D.R. Andrews, J.E. Field, The erosion of metals by the normal impingement of hard solid spheres, J. Phys. D: Appl. Phys., 15, 571–578, 1982.
  • 33. J. E. Field, M. B. Lesser, J. P. Dear, Studies of two-dimensional liquid-wedge impact and their relevance to liquid-drop impact problems, Proc. R. Soc. Lond. A, 401, 225–249, 1985.
  • 34. Y. L. Bai, B. Dodd, Adiabatic Shear Localization: Occurrence, Theories and Applications, Pergamon, Oxford, 1992.
  • 35. S. M. Walley, Shear localization: A historical overview, Metall. Mater. Trans. A, 38, 2629–2654, 2007.
  • 36. J. P. Dear, Use of high-speed photography in the evaluation of polymer materials, Proc. SPIE, 1358, 37–42, 1990.
  • 37. W. G. Proud, N. Lynch, A. Marsh, J. E. Field, Instrumented smallscale rod penetration studies: The effect of pitch, [in:] Proc. 19th Int. Symp. on Ballistics, pp. 1289–1295, Crewther I.R. [Ed.], Interlaken, Switzerland, 2001.
  • 38. G. R. Willmott, D. D. Radford, Taylor impact of glass rods, J. Appl. Phys., 97, 093522, 2005.
  • 39. D. J. Chapman, D. D. Radford, M. Reynolds, P. D. Church, Shock induced void nucleation during Taylor impact, Int. J. Fract., 134, 41–57, 2005.
  • 40. Z. Rosenberg, S. J. Bless, Determination of dynamic yield strengths with embedded manganin gages in plate-impact and long-rod experiments, Exper. Mech., 26, 279–282, 1986.
  • 41. Z. Rosenberg, S. Bless, Stress wave measurements in impulsively loaded long steel rods with embedded manganin gauges, [in:] Proc. Int. Symp. on Intense Dynamic Loading and its Effects, pp. 742–746, Zheng Z., Ding J. [Eds.], Pergamon, Oxford, 1988.
  • 42. L. Pochhammer, Uber Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiszylinder, J. reine angew. Math., 81, 324–336, 1876.
  • 43. C. Chree, The equations of an isotropic elastic solid in polar and cylindrical coordinates: Their solution and application, Trans. Cambridge Philos. Soc., 14, 250–369, 1889.
  • 44. N. A. Safford, Materials testing up to 10 5 s −1 using a miniaturised Hopkinson bar with dispersion corrections, [in:] Proc. 2nd. Int. Symp. on Intense Dynamic Loading and its Effects, pp. 378–383, Zhang G., Huang S. [Eds.], Sichuan University Press, Chengdu, P.R. China, 1992.
  • 45. G. T. Gray III, Classic split-Hopkinson pressure bar testing, [in:] ASM Handbook. 8: Mechanical Testing and Evaluation, pp. 462–476, Kuhn H., Medlin D. [Eds.], ASM International, Materials Park, Ohio, 2000.
  • 46. P. D. Church, I. Cullis, Development and application of high strain rate constitutive models in hydrocodes, J. Phys. IV France, 1, (C3), 917–922, 1991.
  • 47. P. D. Church, T. Andrews, B. Goldthorpe, A review of constitutive model development within DERA, [in:] Structures under Extreme Loading Conditions (PVP 394), pp. 113–120, Jerome D.M. [Ed.], American Society of Mechanical Engineers, New York, 1999.
  • 48. E. C. Cameron, D. C. Barton, T. D. Andrews, P. D. Church, An experimental and numerical study of the ductile fracture process for rolled homogeneous armour alloy steel, J. Phys. IV France, 10 (Pr. 9), 209–214, 2000.
  • 49. L. C. Forde, W. G. Proud, S. M. Walley, Symmetrical Taylor impact studies of copper, Proc. R. Soc. A, 465, 769–790, 2009.
  • 50. L. C. Forde, S. M. Walley, M. Peyton–Jones, W. G. Proud, I. G. Cullis, P. D. Church, The use of symmetric Taylor impact to validate constitutive models for an fcc metal (copper) and a bcc alloy (RHA steel), [in:] Proc. 9th Int. Conf. on the Mechanical and Physical Behaviour of Materials under Dynamic Loading (DYMAT 2009), pp. 1245–1250, EDP Sciences, Les Ulis, France, 2009.
  • 51. R. F. Recht, Taylor ballistic impact modelling applied to deformation and mass loss determinations, Int. J. Engng Sci., 16, 809–827, 1978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0055-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.